
c© British Computer Society 2002

Multithreaded Processors
THEO UNGERER1 , BORUT ROBIČ2 AND JURIJ ŠILC3

1University of Augsburg, Department of Computer Science, Augsburg, Germany
2University of Ljubljana, Faculty of Computer and Information Science, Ljubljana, Slovenia

3Jožef Stefan Institute, Computer Systems Department, Ljubljana, Slovenia
Email: Theo.Ungerer@informatik.uni-augsburg.de

The instruction-level parallelism found in a conventional instruction stream is limited. Studies have
shown the limits of processor utilization even for today’s superscalar microprocessors. One solution
is the additional utilization of more coarse-grained parallelism. The main approaches are the
(single) chip multiprocessor and the multithreaded processor which optimize the throughput of
multiprogramming workloads rather than single-thread performance. The chip multiprocessor
integrates two or more complete processors on a single chip. Every unit of a processor is duplicated
and used independently of its copies on the chip. In contrast, the multithreaded processor is able to
pursue two or more threads of control in parallel within the processor pipeline. Unused instruction
slots, which arise from pipelined execution of single-threaded programs by a contemporary
microprocessor, are filled by instructions of other threads within a multithreaded processor.
The execution units are multiplexed between the threads in the register sets. Underutilization of a
superscalar processor due to missing instruction-level parallelism can be overcome by simultaneous
multithreading, where a processor can issue multiple instructions from multiple threads each
cycle. Simultaneous multithreaded processors combine the multithreading technique with a wide-
issue superscalar processor such that the full issue bandwidth is utilized by potentially issuing
instructions from different threads simultaneously. This survey paper explains and classifies the
various multithreading techniques in research and in commercial microprocessors and compares

multithreaded processors with chip multiprocessors.

Received 11 May 2001; revised 20 December 2001

1. INTRODUCTION

VLSI technology will allow future microprocessors to
have an issue bandwidth of 8–32 instructions per cycle
[1, 2]. As the issue rate of future microprocessors
increases, the compiler or the hardware will have to
extract more instruction-level parallelism (ILP) from a
sequential program. However, ILP found in a conventional
instruction stream is limited. ILP studies which allow
branch speculation for a single control flow have reported
parallelism of around 7 instructions per cycle (IPC)
with infinite resources [3, 4] and around 4 IPC with
large sets of resources (e.g. 8 to 16 execution units)
[5]. Contemporary high-performance microprocessors
therefore exploit speculative parallelism by dynamic branch
prediction and speculative execution of the predicted branch
path to increase single-thread performance.

Research into future microarchitectures—exemplified by
the proposal of a superspeculative microprocessor [6]—has
additionally looked at the prediction of data dependences,
source operand values, value strides, address aliases and load
values with speculative execution applying the predicted
values [7, 8, 9, 10]. The superspeculative microarchitecture
technique is applied to increase the performance of a single
program thread by means of branch and value speculation
techniques. Only instructions of a single thread of control
are in execution.

Multithreading pursues a different set of solutions by
utilizing coarse-grained parallelism [11, 12, 13]. A multi-
threaded processor is able to concurrently execute instruc-
tions of different threads of control within a single pipeline.
Depending on the architectural approach, multithreading is
applied either to increase performance of a single program
thread by implicitly utilizing parallelism which is more
coarse-grained than ILP (so-called implicit multithreading)
or to increase performance of a multiprogramming or
multithreaded workload (so-called explicit multithreading).

1.1. Notion of a thread

The notion of a thread in the context of multithreaded
processors differs from the notion of software threads
in multithreaded operating systems. In the case of a
multithreaded processor a thread is always viewed as a
hardware-supported thread which can be—depending on the
specific form of multithreaded processor—a full program
(single-threaded UNIX process), a light-weight process (e.g.
a POSIX thread) or a compiler- or hardware-generated
thread (subordinate microthread, microthread, nanothread
etc.). Consequences for multithreaded processor design are
as follows.

• The most common coarse-grained thread-level paral-
lelism is to execute multiple processes in parallel. This
implies that different logical address spaces have to be

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

https://www.researchgate.net/publication/2620954_Limits_Of_Instruction-Level_Parallelism?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2954795_Superspeculative_microarchitecture_for_beyond_AD_2000?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/220938681_Value_Locality_and_Load_Value_Prediction?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/238686227_Architecture_And_Applications_Of_The_HEP_Multiprocessor_Computer_System?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3791092_Limits_of_Control_Flow_on_Parallelism?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3758416_Memory_dependence_prediction_using_store_sets?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/264923317_Multithreaded_computer_architecture_A_summary_of_the_state_of_the_art?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==


MULTITHREADED PROCESSORS 321

maintained for the different instruction streams that are
in execution.

• The parallel execution of multiple threads from a single
application usually implies a common address space for
all threads. Here threads of control are identical with
the threads (light-weight processes) of a multithreaded
operating system such as Sun Solaris, IBM AIX and
Windows NT, used by today’s symmetric multiproces-
sor workstations and servers. This approach has several
architectural advantages for multithreaded processors
as well as for chip multiprocessors (CMPs). Cache
organization is simplified when a single logical address
space is shared. Moreover, thread synchronization, as
well as exchange of global variables between threads,
can be made very efficient by providing common on-
chip memory structures (shared caches or even shared
registers). If the threads shared a single program
multiple data (SPMD) program structure, a single
multiported instruction cache (I-cache) might be con-
sidered. However, although most desktop applications
like Acrobat, Netscape, Photoshop, Powerpoint and
Winword today use three to eight threads, most thread
activity in these program systems is restricted to a
single main thread [14]. This drawback may be
alleviated by parallelizing compilers in conjunction
with regularly structured application problems such
as, for example, numerical problems or multimedia
applications.

• Execution of a sequential application may be acceler-
ated by extracting threads of control either statically
by the compiler or dynamically by hardware from a
single instruction stream (exemplified by the implicit
multithreaded architectures, see below).

1.2. Implicit multithreading

One set of solutions for increasing the performance of
sequential programs is to apply an even higher degree of
speculation in combination with a functional partitioning
of the processor. Here thread-level parallelism is utilized,
typically in combination with thread-level speculation [15].
A thread in such architectures refers to any contiguous
region of the static or dynamic instruction sequence.
The term implicit multithreaded architecture refers to any
architecture that can concurrently execute several threads
from a single sequential program. The threads may be
obtained with or without the help of the compiler.

Examples of such architectural approaches are the
multiscalar [16, 17, 18, 19], the trace processor [20,
21, 22], the single-program speculative multithreading
architecture [23], the superthreaded architecture [24, 25], the
dynamic multithreading processor [26] and the speculative
multithreaded processor [27]. Some of these approaches
may rather be viewed as very closely coupled CMPs,
because multiple subordinate processing units execute
different threads under the control of a single sequencer unit,
whereas a multithreaded processor may be characterized
by a single processing unit with a single or multiple-issue

pipeline able to process instructions of different threads
concurrently.

A number of research projects have surveyed eager
execution—dual path execution of branches. They extend
either superscalar or simultaneous multithreaded processors.
All need some kind of architecture that is able to pursue
two threads in parallel typically by assuming multithreaded
processor hardware.

Closely related to implicit multithreading are architectural
proposals that only slightly enhance a superscalar processor
by the ability to pursue two or more threads only for a
short time. In principle, predication is the first step in this
direction. An enhanced form of predication is able to issue
and execute a predicated instruction even if the predicate
is not yet solved. A further step is dynamic predication
[28] as applied for the Polypath architecture [29] that is a
superscalar enhanced to handle multiple threads internally.
Another step to multithreading is simultaneous subordinate
microthreading [30] which is a modification of superscalars
to run threads at a microprogram level concurrently.

1.3. Explicit multithreading

The solution surveyed in this paper is the utilization
of coarser-grained parallelism by (single) CMPs and
multithreaded processors. A CMP (sometimes called
a multiprocessor chip) integrates two or more complete
processors on a single chip. Therefore, every unit of a
processor is duplicated and used independently of its copies
on the chip.

In contrast, a multithreaded processor interleaves the
execution of instructions of different threads of control in
the same pipeline. Therefore, multiple program counters
are available in the fetch unit and the multiple contexts
are often stored in different register sets on the chip. The
execution units are multiplexed between the thread contexts
that are loaded in the register sets. The latencies that
arise in the computation of a single instruction stream
are filled by computations of another thread. This ability
is in contrast to reduced instruction set computer (RISC)
processors or today’s superscalar processors, which use busy
waiting or a time-consuming, operating system-based thread
switch. Multithreaded processors tolerate memory latencies
by overlapping the long-latency operations of one thread
with the execution of other threads—in contrast to the CMP
approach.

Depending on the specific multithreaded processor
design, either a single-issue instruction pipeline (as in scalar
RISC processors) is used or instructions from different
instruction streams are issued simultaneously. The latter
are called simultaneous multithreaded (SMT) processors and
combine the multithreading technique with a wide-issue
superscalar processor such that the full issue bandwidth is
utilized by potentially issuing instructions from different
threads simultaneously.

The focus of this survey paper is, in particular, on
multithreaded processors that are designed to simultane-
ously execute threads of the same or of different processes.

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

https://www.researchgate.net/publication/220475742_Speculative_Multithreaded_Processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/36172528_Simultaneous_subordinate_microthreading?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2954812_Trace_processors_Moving_to_fourth-generation_microarchitectures?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/246906623_Multiscalar_Another_fourth-generation_processor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/200775321_The_Multiscalar_Architecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3668653_The_superthreaded_architecture_thread_pipelining_with_run-time_data_dependence_checking_and_control_speculation?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/221235982_Speculative_Multithreaded_Processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3661214_Multiscalar_processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3784404_A_dynamic_multithreading_processor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3700199_Improving_Superscalar_Instruction_Dispatch_And_Issue_By_Exploiting_Dynamic_Code_Sequences?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3784414_Task_selection_for_a_multiscalar_processor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==


322 T. UNGERER, B. ROBIČ AND J. ŠILC

We call such processors explicit multithreaded in contrast
to the implicit multithreaded processors mentioned earlier.
Explicit multithreaded processors are able to increase the
performance of a multiprogramming workload. However,
single-thread performance may slightly decrease when com-
pared to a single-threaded processor. Note that explicit
multithreaded processors aim at a low execution time of
a multithreaded workload, while superscalar and implicit
multithreaded processors aim at a low execution time of a
single program.

1.4. The origins of multithreading

The first multithreaded processors in the 1970s and 1980s
[11] applied multithreading at the user thread level to solve
the memory access latency problem that arises for each
memory access after a cache miss—in particular, when
a processor of a shared-memory multiprocessor accesses
a shared-memory variable located in a remote-memory
module. To perform such a remote-memory access in
a distributed shared-memory (DSM) multiprocessor, the
processor issues a request message to the communication
network that couples the processor–memory nodes. The
request message traverses the network to the memory
module. The memory module reads the value, respectively
the cache line, and sends a result message back to the
requesting processor. Depending on the coherence scheme,
further actions may be necessary to guarantee memory
consistency or cache coherence before the requested value
or cache line is sent back [31]. The interval between the
sending of the request message until the return of the result
message is called (remote) memory access latency or often
just the latency. Latencies that arise in a pipeline are defined
with a wider scope—for example, covering also long-latency
operations like div or latencies due to branch interlocking.
The latency becomes a problem if the processor spends a
large fraction of its time sitting idle and waiting for remote
accesses to complete.

Load access latencies measured on an Alpha Server 4100
SMP with four 300 MHz Alpha 21164 processors are [32]:
seven cycles for a primary cache miss which hits in the on-
chip secondary cache of the 21164 processor, 21 cycles for
a secondary cache miss which hits in the tertiary (board-
level) cache, 80 cycles for a miss that is served by the
memory and 125 cycles for a dirty miss, i.e. a miss that has
to be served from another processor’s cache memory. For
DSM multiprocessors supporting up to 1024 processors we
can expect latencies of 200 cycles or more. Furthermore,
memory access latencies are expected to increase over time
as on-chip speeds are increased more quickly than off-chip
speeds.

Older multithreaded processor approaches from the 1980s
usually extend scalar RISC processors by a multithreading
technique and focus at effectively bridging very long
remote memory access latencies. Such processors will
only be useful as processor nodes in DSM multiprocessors.
However, developing a processor that is specifically

designed for DSM multiprocessors is commonly regarded
as too expensive. Multiprocessors today comprise standard
off-the-shelf microprocessors and almost never specifically
designed processors (with the exception of Cray MTA [33]).
Therefore, newer multithreaded processor approaches also
strive for tolerating smaller latencies that arise from primary
cache misses that hit in secondary cache, from long-latency
operations or even from unpredictable branches.

Another root of multithreading comes from dataflow
architectures. Viewed from a dataflow perspective a single-
threaded architecture is characterized by the computation
that conceptually moves forward one step at a time through a
sequence of states, each step corresponding to the execution
of one enabled instruction. The state of a single-threaded
machine consists of the memory state (program memory,
data memory, stack) and the processor state which consists
of the continuation or activity specifier (program counter,
stack pointer) and the register context (a set of register
contents). The processor state is also called the context of
a thread. Today most processors are of a single-threaded
processor architecture.

According to Dennis and Gao [34], a multithreaded
architecture differs from a single-threaded architecture in
that there may be several enabled instructions from different
threads which all are candidates for execution. Similar to
the single-threaded machine, the state of the multithreaded
machine consists of the memory state and the processor
state; the latter, however, consists of a collection of activity
specifiers and a collection of register contexts. A thread is a
sequentially ordered block of instructions with a grain size
greater than one (to distinguish multithreaded architectures
from fine-grained dataflow architectures).

Another notion is the distinction between blocking and
non-blocking threads. A non-blocking thread is formed such
that its evaluation proceeds without blocking the processor
pipeline (for instance, by remote memory accesses, cache
misses or synchronization waits). Evaluation of a non-
blocking thread starts as soon as all input operands are
available, which is usually detected by some kind of
dataflow principle. Thread switching is controlled by the
compiler harnessing the idea of rescheduling, rather than
blocking, when waiting for data. Access to remote data is
organized in a split-phase manner by one thread sending
the access request to memory and another thread activating
when its data are available. Thus a program is compiled
into many very small threads activating each other when data
become available. The same mechanisms may also be used
to synchronize interprocess communications to awaiting
threads, thereby alleviating operating systems overhead.
In contrast, a blocking thread might be blocked during
execution by remote memory accesses or cache misses.
(During synchronization, a switch is necessary to avoid
deadlock.) The waiting time, during which the pipeline
is blocked, is lost when using a von Neumann processor,
but can be efficiently bridged by a fast context switch to
another thread in a multithreaded processor. Switching
to another thread in a single-threaded processor usually
exhibits too much context switching overhead to mask the

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

https://www.researchgate.net/publication/3758395_Memory_System_Characterization_of_Commercial_Workloads?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/264923317_Multithreaded_computer_architecture_A_summary_of_the_state_of_the_art?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==


MULTITHREADED PROCESSORS 323

latency efficiently. The original thread can be resumed when
the reason for blocking is removed.

Use of non-blocking threads typically leads to many
small threads that are appropriate for execution by a hybrid
dataflow computer or by a multithreaded architecture that
is closely related to hybrid dataflow. Blocking threads may
just be the threads (e.g. P(OSIX) threads or Solaris threads)
or whole UNIX processes of a multithreaded UNIX-based
operating system, but may also be even smaller microthreads
generated by a compiler to utilize the potentials of a
multithreaded processor.

Note that we exclude in this survey hybrid dataflow
architectures that are designed for the execution of non-
blocking threads. Although these architectures are often
called multithreaded, we have categorized them in a previous
paper [35] as threaded dataflow or large-grain dataflow
because a dataflow principle is applied to start the execution
of non-blocking threads. Thus, multithreaded architectures
(in the more narrow sense applied here) stem from the
modification of scalar RISC, very long instruction word
(VLIW) or even superscalar RISC processors.

1.5. Paper organization

The rest of this survey paper is organized as follows.
Section 2 describes the various explicit multithreading
approaches, which can be classified into interleaved
multithreading, blocked multithreading and simultaneous
multithreading. Further multithreading approaches, in par-
ticular, implicit multithreading, multithreading and sched-
uled dataflow, dual path branch execution models and
multithreading approaches to signal processing and real-
time event handling are briefly described in Section 3. Sec-
tion 4 introduces the chip multiprocessors approach, which
places a small number of distinct processors on a single
chip. A comparison between the simultaneous multithreaded
approach and the chip multiprocessor approach is given in
Section 5. Finally, the main conclusions are summarized in
Section 6.

2. MULTITHREADED PROCESSORS

2.1. Principal approaches

The minimal requirement for a multithreaded processor
is the ability to pursue two or more threads of control
in parallel within the processor pipeline—i.e. it must
provide two or more independent program counters—and
a mechanism that triggers a thread switch. Thread-switch
overhead must be very low, from zero to only a few cycles.
A fast context switch is supported by multiple program
counters and often by multiple register sets on the processor
chip.

The following principle approaches to multithreaded
processors exist.

• Interleaved multithreading technique. An instruction
of another thread is fetched and fed into the execution
pipeline at each processor cycle (see Section 2.2).

• Blocked multithreading technique. The instructions of
a thread are executed successively until an event occurs
that may cause latency. This event induces a context
switch (see Section 2.3).

• Simultaneous multithreading. The wide superscalar
instruction issue is combined with the multiple-context
approach. Instructions are simultaneously issued from
multiple threads to the execution units of a superscalar
processor (see Section 2.4).

Before we present the different multithreading approaches
in detail, we briefly review the main principles of archi-
tectural approaches that exploit instruction-level parallelism
and thread-level parallelism.

Figures 1a–1c demonstrates the different approaches
possible with scalar (i.e. single-issue) processors: single-
threaded (Figure 1a), with interleaved multithreading
(Figure 1b) and with blocked multithreading (Figure 1c).

Another way to look at latencies that arise in a pipelined
execution is the opportunity cost in terms of the instructions
that might be processed while the pipeline is interlocked,
for example, waiting for a remote reference to return. The
opportunity cost of single-issue processors is the number
of cycles lost by latencies. Multiple-issue processors (e.g.
superscalar, VLIW, etc.) potentially execute more than one
IPC. In this case, it should be clear that latency cycles are
cycles where no instruction can be issued and that issue
bandwidth is the maximum number of instructions that can
be issued per cycle. Thus, the opportunity cost for multiple-
issue processors is the product of the latency cycles and the
issue bandwidth plus the number of unfilled places in not
fully filled issue slots. We expect that future single-threaded
processors will continue to exploit further superscalar or
other multiple-issue techniques, and thus further increase the
opportunity cost of remote-memory accesses.

Figures 1d–1i demonstrate the different approaches pos-
sible with four-issue processors: single-threaded superscalar
(Figure 1d), single-threaded VLIW (Figure 1g), superscalar
with interleaved multithreading (Figure 1e), superscalar with
blocked multithreading (Figure 1f), VLIW with interleaved
multithreading (Figure 1h) and VLIW with blocked multi-
threading (Figure 1i).

The opportunity cost in single-threaded superscalar
(Figure 1d) can be easily determined as the number of
empty issue slots. It consists of horizontal losses (the
number of empty places in the not fully filled issue slot)
and the even more harmful vertical losses (cycles where
no instructions can be issued). In VLIW processors
(Figure 1g), horizontal losses appear as no-op operations.
The opportunity cost of single-threaded VLIW is about
the same as single-threaded superscalar. Interleaved
multithreading superscalar (Figure 1e) and interleaved
multithreading VLIW (Figure 1h) are able to fill the vertical
losses of the single-threaded models by instructions of
other threads, but not the horizontal losses. Further design
possibilities, blocked multithreading superscalar (Figure 1f)
and blocked multithreading VLIW (Figure 1i) models would
fill several succeeding cycles with instructions of the same

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002



324 T. UNGERER, B. ROBIČ AND J. ŠILC

A

A

A

D

C

B

B

DA CB DA CB

B

B

A

A

A

A

A

A

(g)

C
y
cl

es

Issue bandwidth

N N

N N N

N

(i) (j) (k)(h)

C
o
n
te

x
t

sw
it

ch
es

C
o
n
te

x
t

sw
it

ch

C
o
n
te

x
t

sw
it

ch
es

N N

NN

N

N

N N

N N N

C
o
n
te

x
t

sw
it

ch
es

N

N

N

NNN

NN

NN

N

AA

AA

AA

AA

AAA

A A AA

A

AA

A DA CB D

D DDD

A C

C

C

B

B B

B

B

B

BBB

(d)(a)

Issue slot

Latency
cycle

(e)(b)

C
o
n
te

x
t

sw
it

ch
es

(f)(c)

C
o
n
te

x
t

sw
it

ch
es

A

AA

AA

AA

AA

AAA

AAAA

A

AA

DDDD

C

CB

B

B B B

BBB

DA CBDA CB

DA

A

A A A

C

C

C

C

C

CC

CC

DD

D

D

DD

D

D DD DD

D D D

D

D D

D D D D D

B B B

B

B

B BB

BB

BB

BB

B

BB

B

AAAA

AAA

AAA

AAAA

AA

AA

AA

A

AA

CBDA CB

{

FIGURE 1. Different approaches possible with scalar processors: (a) single-threaded scalar; (b) interleaved multithreading scalar;
(c) blocked multithreading scalar. Different approaches possible with multiple-issue processors: (d) superscalar; (e) interleaved
multithreading superscalar; (f) blocked multithreading superscalar; (g) VLIW; (h) interleaved multithreading VLIW; (i) blocked
multithreading VLIW; (j) simultaneous multithreading; and (k) chip multiprocessor. Each row represents the issue slots for a single execution
cycle. An empty box represents an unused slot; N stands for a no-op operation.

thread before context switching. The switching event
is more difficult to implement and a context-switching
overhead of one to several cycles might arise.

Figures 1j and 1k demonstrate a four-threaded eight-issue
SMT processor (Figure 1j) and a CMP with four two-issue
processors (Figure 1k). The processor model in Figure 1j
exploits ILP by selecting instructions from any thread (four
in this case) that can potentially issue. If one thread has
high ILP, it may fill all horizontal slots depending on the
issue strategy of the SMT processor. If multiple threads each
have low ILP, instructions of several threads can be issued
and executed simultaneously. In the CMP with four two-
issue CPUs on a single chip that is represented in Figure 1k,
each CPU is assigned a thread from which it can issue up to
two instructions each cycle. Thus, each CPU has the same
opportunity cost as in a two-issue superscalar model. The
CMP is not able to hide latencies by issuing instructions of
other threads. However, because horizontal losses will be
smaller for two-issue than for high-bandwidth superscalars,
a CMP of four two-issue processors will reach a higher
utilization than an eight-issue superscalar processor (see
Table 3 and [36]).

2.2. Interleaved multithreading

In the interleaved multithreading model (also called fine-
grain multithreading) the processor switches to a different
thread after each instruction fetch. In principle, an

instruction of a thread is fed into the pipeline after
the retirement of the previous instruction of that thread.
Since interleaved multithreading eliminates control and data
dependences between instructions in the pipeline, pipeline
hazards cannot arise and the processor pipeline can be
easily built without the necessity of complex forwarding
paths. This leads to a very simple and therefore potentially
very fast pipeline—no hardware interlocking is necessary.
Moreover, the context-switching overhead is zero cycles.
Memory latency is tolerated by not scheduling a thread
until the memory transaction has completed. This model
requires at least as many threads as pipeline stages in the
processor. Interleaving the instructions from many threads
limits the processing power accessible to a single thread,
thereby degrading the single-thread performance. There are
two possibilities to overcome this deficiency.

• The dependence lookahead technique (e.g. used in
Cray MTA [33]) adds several bits to each instruction
format in the ISA. The additional opcode bits allow
the compiler to state the number of instructions directly
following in program order that are not data- or control-
dependent on the instruction being executed. This
allows the instruction scheduler in the interleaved
multithreading processor to feed non-data- or control-
dependent instructions of the same thread successively
into the pipeline. The dependence lookahead technique
may be applied to speed up single-thread performance

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002



MULTITHREADED PROCESSORS 325

or in the case where a workload does not comprise
enough threads.

• The interleaving technique [37] adds caching and full
pipeline interlocks to the interleaved multithreading
approach. Contexts are interleaved on a cycle-by-cycle
basis, yet a single-thread context is also efficiently
supported.

The most well-known examples of interleaved multi-
threading processors were used in the Heterogeneous Ele-
ment Processor (HEP) [38], the Horizon [39] and the Cray
Multithreaded Architecture (MTA) [33] multiprocessors.
The HEP system had up to 16 processors while the other two
consisted up to 256 processors. Each of these processors
supported up to 128 threads. While HEP uses instruction
lookahead only if there is no other work, the Horizon
and Cray MTA employ explicit dependence lookahead
techniques.

Further interleaved multithreading processor proposals in-
clude the Multilisp Architecture for Symbolic Applications
(MASA) [40], the SB-PRAM/HPP [41] and MicroUnity’s
MediaProcessor [42], as an example of a multithreaded
signal processor. The SB-PRAM is 32-threaded and the
MediaProcessor interleaves five contexts.

In principle, interleaved multithreading can also be com-
bined with a superscalar instruction issue, but simulations
[36] confirm the intuition that SMT is the more efficient
technique (see Section 5).

Some machines as well as ongoing projects that use
interleaved multithreading are described in more detail
below.

2.2.1. HEP
The HEP system [13] was a multiple instruction multiple
data (MIMD) shared-memory multiprocessor system de-
veloped by Denelcor Inc., Denver, CO between 1978 and
1985, and it was a pioneering example of a multithreaded
machine. The HEP system was designed to have up to 16
processors (Figure 2) with up to 128 threads per processor.
The 128 threads were supported by replicating the register
files 128 times (32 general registers and eight branch target
registers per thread). The processor pipeline had eight
stages, matching the number of processor cycles necessary
to fetch a data item from memory in register. There were
three types of operations: a memory reference operation
(M-op), an arithmetic/logical operation (A-op) and a branch
or simple arithmetic/logical operation (C-op). Up to eight
threads were in execution concurrently within a single HEP
processor. However, the pipeline did not allow more than
one memory, branch or divide instruction to be in the
pipeline at the given time. If thread queues were all empty,
the next instruction from the last thread dispatched was ex-
amined for independence from the previous instruction and
if so, the instruction was also issued. In contrast to all other
interleaved multithreading processors, all threads within a
HEP processor shared the same register set. Multiple proces-
sors and data memories were interconnected via a pipelined
switch and any register-memory or data-memory location

FIGURE 2. The HEP processor (A-op, arithmetic/logical
operation; C-op, branch or simple arithmetic/logical operation;
M-op, memory reference operation).

could be used to synchronize two processes on a producer–
consumer basis by a full/empty bit synchronization on a data
memory word.

2.2.2. MASA
The MASA [40] was an interleaved multithreading pro-
cessor proposal for parallel symbolic computation with
various features intended for effective Multilisp program
execution. MASA featured a tagged architecture, multiple
contexts, fast trap handling and a synchronization bit in
every memory word. Its principal novelty was the use of
multiple contexts both to support interleaved execution from
separate instruction streams and to speed up procedure calls
and trap handling (in the same manner as register windows).

2.2.3. Cray MTA
The Cray MTA computer [33] features a powerful VLIW
instruction set, uniform access time from any processor
to any memory location and zero-cost synchronization and
swapping between threads of control. It was designed by
the Tera Computer Company, Seattle, WA, which has been a
part of Cray since April 2000.

The MTA inherits much of the design philosophy of the
HEP as well as a (paper) architecture called Horizon [39].
The latter was designed for up to 256 processors and up
to 512 memory modules in a 16 × 16 × 6 node internal
network. Horizon (like HEP) employed a global address
space and memory-based synchronization through the use of
full/empty bits at each location. Each processor supported
128 independent instruction streams by 128 register sets
with context switches occurring at every clock cycle. Unlike
HEP, Horizon allows multiple memory operations from a
thread to be in the pipeline simultaneously.

MTA systems are constructed from resource modules,
each of which contains up to six resources. A resource can

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

https://www.researchgate.net/publication/220767129_HPP_A_high_performance_PRAM?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3499091_A_processor_architecture_for_Horizon?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3499091_A_processor_architecture_for_Horizon?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2520739_Interleaving_A_Multithreading_Technique_Targeting_Multiprocessors_and_Workstations?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/234777354_MASA_a_multithreaded_processor_architecture_for_parallel_symbolic_computing?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/234777354_MASA_a_multithreaded_processor_architecture_for_parallel_symbolic_computing?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/242601899_The_architecture_of_hep?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3214885_MicroUnity's_MediaProcessor_architecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/238686227_Architecture_And_Applications_Of_The_HEP_Multiprocessor_Computer_System?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==


326 T. UNGERER, B. ROBIČ AND J. ŠILC

be a computational processor (CP), an I/O processor (IOP),
an I/O cache (IOC) unit and either two or four memory
units (MUs). Each resource is individually connected to a
separate routing node in the partially connected 3-D torus
interconnection network. Each routing node has three or
four communication ports and a resource port. There are
several routing nodes per CP, rather than the several CPs per
routing node. In particular, the number of routing nodes is
at least p3/2, where p is the number of CPs. This allows
bisection bandwidth to scale linearly with p, while the
network latency scales with p1/2. The communication link
is capable of supporting data transfers to and from memory
on each clock tick in both directions, as are all of the links
between the routing nodes themselves.

The Cray MTA custom chip CP (Figure 3) is a multi-
threaded VLIW pipelined processor using the interleaved
multithreading technique. Each thread is associated with
one 64-bit stream status word, 32 64-bit general registers
and eight 64-bit target registers. The processor may switch
context every cycle (3 ns cycle period) between as many
as 128 distinct threads (called streams by the designers of
the MTA), thereby hiding up to 128 cycles (384 ns) of
memory latency. Since the context switching is so fast, the
processor has no time to swap the processor state. Instead,
it has multiples of 128 of everything, i.e. 128 stream status
words, 4096 general registers and 1024 target registers.
Dependences between instructions are explicitly encoded by
the compiler using explicit dependence lookahead. Each
instruction contains a 3-bit lookahead field that explicitly
specifies how many instructions from this thread will be
issued before encountering an instruction that depends on
the current one. Since seven is the maximum possible looka-
head value, at most eight instructions (i.e. 24 operations)
from each thread can be concurrently executing in different
stages of a processor’s pipeline. In addition, each thread can
issue as many as eight memory references without waiting
for earlier ones to finish, further augmenting the memory
latency tolerance of the processor. The CP has a load/store
architecture with three addressing modes and 32 general-
purpose 64-bit registers. The 3-wide VLIW instructions are
64 bits. Three operations can be executed simultaneously
per instruction: a memory reference operation (M-op), an
arithmetic/logical operation (A-op) and a branch or simple
arithmetic/logical operation (C-op). If more than one
operation in an instruction specifies the same register or
setting of condition codes, then M-op has higher priority
than A-op which in turn has higher priority than C-op.

The clock speed is nominally 333 MHz, giving each
processor a data path bandwidth of 109 64-bit results per
second and a peak performance of 1 Gflops. The peak
memory bandwidth is 2.67 Gbyte s−1 and it is claimed that
the processor sustains well over 95% of that rate.

Every processor has a clock register that is synchronized
exactly with its counterparts in the other processors and
counts up once per cycle. In addition, the processor counts
the total number of unused instruction issue slots (measuring
the degree of underutilization of the processor) and the time
integral of the number of instruction streams ready to issue

-

FIGURE 3. The MTA computational processor (A-op, arith-
metic/logical operation; C-op, branch or simple arithmetic/logical
operation; M-op, memory reference operation).

(measuring the degree of overutilization of the processor).
All three counters are user-readable in a single unprivileged
operation. Eight counters are implemented in each of the
protection domains of the processor. All are user-readable
in a single unprivileged operation. Four of these counters
accumulate the number of instructions issued, the number
of memory references, the time integral of the number
of instruction streams and the time integral of the number of
messages in the network. These counters are also used for
job accounting. The other four counters are configurable to
accumulate events from any four of a large set of additional
sources within the processor, including memory operations,
jumps, traps and so on.

Thus, the Cray MTA exploits parallelism at all levels,
from fine-grained ILP within a single processor to parallel
programming across processors, to multiprogramming
among several applications simultaneously. Consequently,
processor scheduling occurs at many levels and managing
these levels poses unique and challenging scheduling
concerns [43].

After many delays the MTA reached the market in
December 1997 when a single-processor system (clock
speed 145 MHz) was delivered to the San Diego
Supercomputer Center. In May 1999, the system was
upgraded to eight processors and a network with 64 routing
nodes. Each processor runs at 260 MHz and is theoretically
capable of 780 Mflops.

Early MTA systems had been built using GaAs technol-
ogy for all logic design. As a result of the semiconductor
market’s focus on CMOS technology for computer systems,
Cray started a transition to using CMOS technology in the
MTA.

2.2.4. M-Machine
The MIT M-Machine [44] supports both public and
private registers for each thread and uses interleaved

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002



MULTITHREADED PROCESSORS 327

multithreading. Each processor supports four hardware
resident user V-threads and each V-thread supports four
resident H-threads. All the H-threads in a given V-thread
share the same address space and each H-thread instruction
is a three-wide VLIW. Event and exception handling are
each performed by a separate V-thread. Swapping processor-
resident V-threads with one stored in memory requires about
150 cycles (1.5 µs). The M-Machine (like HEP, Horizon and
Cray MTA) employs full-empty bits for efficient, low-level
synchronization. Moreover it supports message passing and
guarded pointers with base and bounds for access control
and memory protection.

2.2.5. SB-PRAM and HPP
The SB-PRAM (SB stands for Saarbrücken) [45] or High-
Performance PRAM (HPP) [41] is a MIMD parallel
computer with shared address space and uniform memory
access time due to its motivation: building a multiprocessor
that is as close as possible to the theoretical machine
model CRCW-PRAM. Processor and memory modules are
connected by a butterfly network. Network latency is
hidden by pipelining several so-called virtual processors on
one physical processor node in interleaved multithreading
mode. Instructions of 32 so-called virtual processors are
interleaved round-robin in a single SB-PRAM processor,
which is therefore classified as a 32-threaded interleaved
multithreading processor. The project is in progress at
the University of Saarland, Saarbrücken, Germany. A first
prototype was running with four processors and this was
recently upgraded to 64 processors which in total support
up to 2048 threads.

2.2.6. SPELL
In 1997, the Jet Propulsion Laboratory in collaboration
with several other institutions (The California Institute
of Technology, Princeton University, University of Notre
Dame, University of Delaware, The State University of New
York at Stonybrook, Tera Computer Company (now Cray),
Argone National Laboratories) initiated a project whose aim
is to design the first petaflops computer by 2005–2007.
The computer will be based on radically new hardware
technologies such as superconductive processors, optical
holographic storages and optical packet switched networks
[46]. There will be 4096 superconductive processors, called
SPELL processors. A SPELL processor consists of 16
multistream units, where each multistream unit is a 64-bit,
deeply pipelined integer processor capable of executing up
to eight parallel threads. As a result, each SPELL is capable
of running in parallel up to 128 threads, arranged in 16
groups of eight threads [47].

2.3. Blocked multithreading

The blocked multithreading approach (sometimes also called
coarse-grain multithreading) executes a single thread until it
reaches a situation that triggers a context switch. Usually
such a situation arises when the instruction execution
reaches a long-latency operation or a situation where

Blocked
multithreading

Static

Dynamic

Switch-on-cache-miss

Switch-on-signal
(interrupt, trap, etc.)

Switch-on-use
(lazy-switch-on-load,
lazy-switch-on-cache-miss)

Conditional-switch

Explicit-switch
(context switch instruction,
instruction tagging)

Implicit-switch
(switch-on-load,
switch-on-store,
switch-on-branch, etc.)

FIGURE 4. Blocked multithreading models.

a latency may arise. Compared to the interleaved
multithreading technique, a smaller number of threads is
needed and a single thread can execute at full speed until the
next context switch. Single-thread performance is similar
to the performance of a comparable processor without
multithreading.

In the following we classify blocked multithreading
processors by the event that triggers a context switch
(Figure 4) [48].

• Static models. A context switch occurs each time
the same instruction is executed in the instruction
stream. The context switch is encoded by the compiler.
The main advantage of this technique is that context
switching can be triggered already in the fetch stage
of the pipeline. The context switching overhead is one
cycle (if the fetched instruction triggers the context
switch and is discarded), zero cycles (if the fetched
instruction triggers a context switch but is still executed
in the pipeline) and almost zero cycles (if a context
switch buffer is applied, see the Rhamma processor
below in this section). There are two main variations
of the static blocked multithreading model.

– The explicit-switch static model, where context
switch is triggered explicitly. This model is sim-
ple to implement. The context switch instruction
model has additional instruction for triggering
context switch. However, this instruction causes
one-cycle context switching overhead. In the
instruction tagging model the compiler tags in-
structions and so implements an explicit context
switch, but it does this without losing a cycle or
dividing instructions into classes.

– The implicit-switch model, where each instruction
belongs to a specific instruction class and a
context switch decision depends on the instruction
class of the fetched instruction. Instruction
classes that cause context switch include load,
store and branch instructions. The switch-on-load
static model switches after each load instruction
to bridge memory access latency. However,
assuming an on-chip data cache (D-cache), the

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

https://www.researchgate.net/publication/245514962_COOL_Multithreading_in_HTMT_SPELL1_Processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/220767129_HPP_A_high_performance_PRAM?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3818718_Context-switching_techniques_for_decoupled_multithreaded_processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==


328 T. UNGERER, B. ROBIČ AND J. ŠILC

thread switch occurs more often than necessary,
which makes an extremely fast context switch
necessary, preferably with zero-cycle context
switch overhead. The switch-on-store static
model switches after store instructions. The
model may be used to support the implementation
of sequential consistency so that the next memory
access instruction can only be performed after
the store has completed in memory. The switch-
on-branch static model switches after branch
instructions. The model can be applied to
simplify processor design by renouncing branch
prediction and speculative execution. The branch
misspeculation penalty is avoided, but single-
thread performance is decreased. However, it may
be effective for programs with a high percentage
of branches that are hard to predict or are even
unpredictable.

• Dynamic models. The context switch is triggered by a
dynamic event. In general, all the instructions between
the fetch stage and the stage that triggers the context
switch are discarded, leading to a higher context switch
overhead than static context switch models. Several
dynamic models can be defined.

– The switch-on-cache-miss dynamic model
switches the context if a load or store misses in
the cache. The idea is that only those loads that
miss in the cache and those stores that cannot be
buffered have long latencies and cause context
switches. Such a context switch is detected in
a late stage of the pipeline. A large number of
subsequent instructions have already entered the
pipeline and must be discarded. Thus context
switch overhead is considerably increased.

– The switch-on-signal dynamic model switches
context on the occurrence of a specific signal, for
example, signaling an interrupt, trap or message
arrival.

– The switch-on-use dynamic model switches when
an instruction tries to use the still missing value
from a load (which, e.g., missed in the cache). For
example, when a compiler schedules instructions
so that a load from shared memory is issued
several cycles before the value is used, the context
switch should not occur until the actual use of the
value. To implement the switch-on-use model, a
valid bit is added to each register (by a simple
form of scoreboard). The bit is cleared when a
load to the corresponding register is issued and
set when the result returns from the network. A
thread switches context if it needs a value from
a register whose valid bit is still cleared. This
model can also be seen as a lazy model that
extends either the switch-on-load static model
(called lazy-switch-on-load) or the switch-on-
cache-miss dynamic model (called lazy-switch-
on-cache-miss).

– The conditional-switch dynamic model couples
an explicit switch instruction with a condition.
The context is switched only when the condition
is fulfilled, otherwise the context switch is
ignored. A conditional-switch instruction may
be used, for example, after a group of load/store
instructions. The context switch is ignored if all
load instructions (in the preceding group) hit the
cache; otherwise, the context switch is performed.
Moreover, a conditional-switch instruction could
also be added between a group of loads and
their subsequent use to realize a lazy context
switch (instead of implementing the switch-on-
use model).

The explicit-switch, conditional-switch and switch-on-
signal techniques enhance the instruction set architecture
(ISA) by additional instructions. The implicit-switch
technique may favor a specific ISA encoding to simplify
instruction class detection. All other techniques are
microarchitectural techniques without the necessity of ISA
changes.

A previous classification [49, 50] concerns multithreading
techniques only in a shared-memory multiprocessor environ-
ment and is restricted to only a few of the variations of the
multithreading techniques described above. In particular, the
switch-on-load model in [50] switches only on instructions
that load data from remote memory, while storing data in
remote memory does not cause context switching. Likewise,
the switch-on-miss model is defined so that the context is
only switched if a load from remote memory misses in the
cache.

Several well-known processors use the blocked multi-
threading approach. The MIT Sparcle [51] and the MSparc
processors [52] use both the switch-on-cache-miss and
the switch-on-signal dynamic models. The CHoPP 1
[53] uses the switch-on-cache-miss dynamic model, while
Rhamma [54, 55] applies several static and dynamic block
multithreading models. These, as well as some other
processors using the blocked multithreading approach, are
described below.

2.3.1. CHoPP 1
The CHoPP 1 [53] was designed by the CHoPP Sullivan
Computer Corporation (ANTs since 1999) in 1987. The
system was a shared-memory MIMD with up to 16 powerful
processors. High sequential performance is due to the
issuing of multiple instructions on each clock cycle, zero-
delay branch instructions and fast execution of individual
instructions. Each processor can support up to 64 threads
and uses the switch-on-cache-miss dynamic interleaving
model.

2.3.2. MDP in J-Machine
The MIT Jellybean Machine (J-Machine) [56] is so-called
because it is to be built entirely of a large number of
‘jellybean’ components. The initial version uses an 8 ×
8 × 16 cube network, with possibilities of expanding to

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

https://www.researchgate.net/publication/2312501_Sparcle_An_Evolutionary_Processor_Design_for_Large-Scale_Multiprocessors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3683571_A_Multithreaded_Processor_Designed_for_Distributed_Shared_Memory_Systems?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/36452107_Towards_Extremely_Fast_Context_Switching_in_a_Block-Multithreaded_Processor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/220769200_MSparc_A_Multithreaded_Sparc?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/248829864_CHoPP_priciples_of_operations?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/248829864_CHoPP_priciples_of_operations?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3791054_Improved_Multithreading_Techniques_for_Hiding_Communication_Latency_in_Multiprocessors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3791054_Improved_Multithreading_Techniques_for_Hiding_Communication_Latency_in_Multiprocessors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==


MULTITHREADED PROCESSORS 329

PC and PSR Frames

PSR
PC
nPC

PSR
PC
nPC

PSR
PC
nPC

PSR
PC
nPC

Register Frames

Global Register Frame

Processor State Memory

Load
Threads

Unload
Threads

Execute

Execute

Execute

Execute

Execute

ExecuteFP

FIGURE 5. Sparcle register usage (PSR, Processor Status
Register; PC, Program Counter; nPC, Next Program Counter; FP,
Frame Pointer).

64k nodes. The ‘jellybeans’ are message-driven processor
(MDP) chips, each of which has a 36-bit processor,
a 4k word memory and a router with communication
ports for bidirectional transmissions in three dimensions.
External memory of up to 1M words can be added per
processor. The MDP creates a task for each arriving
message. In the prototype, each MDP chip has four external
memory chips that provide 256k memory words. However,
access is through a 12-bit data bus and, with an error
correcting cycle, the access time is four memory cycles per
word. Each communication port has a 9-bit data channel.
The routers provide support for automatic routing from
source to destination. The latency of a transfer is 2 µs
across the prototype machine, assuming no blocking. When
a message arrives, a task is created automatically to handle it
in 1 µs. Thus, it is possible to implement a shared memory
model using message passing, in which a message provides
a fetch address and an automatic task sends a reply with the
desired data.

2.3.3. MIT Sparcle
The MIT Sparcle processor [51] is derived from a SPARC
RISC processor. The eight overlapping register windows of
a SPARC processor are organized as four independent non-
overlapping thread contexts, each using two windows, one
as a register set, the other as a context for trap and message
handlers (Figure 5).

Context switches are used only to hide long memory
latencies since small pipeline delays are assumed to be
hidden by proper ordering of instructions by an optimizing
compiler. The MIT Sparcle processor switches to
another context in the case of a remote cache miss or a
failed synchronization (switch-on-cache-miss and switch-
on-signal strategies). Thread switching is triggered by
external hardware, i.e. by the cache/directory controller.
Reloading of the pipeline and the software implementation
of the context switch cause a context switch cost of 14
processor cycles.

The MIT Alewife DSM multiprocessor [57] is based
on the multithreaded MIT Sparcle processor. The

FIGURE 6. An Alewife node.

multiprocessor has been operational since May 1994.
A node in the Alewife multiprocessor comprises a Sparcle
processor, an external floating-point unit, a cache and
a directory-based cache controller that manages cache-
coherence, a network router chip and a memory module
(Figure 6).

The Alewife multiprocessor uses a low-dimensional direct
interconnection network. Despite its distributed-memory
architecture, Alewife allows efficient shared-memory pro-
gramming through a multilayered approach to locality
management. Communication latency and network band-
width requirements are reduced by a directory-based cache-
coherence scheme referred to as LimitLESS directories.
Latencies still occur although communication locality is
enhanced by run-time and compile-time partitioning and
placement of data and processes.

2.3.4. MSparc
An approach similar to the MIT Sparcle processor was taken
at the University of Oldenburg, Germany with the MSparc
processor [52]. MSparc supports up to four contexts on
chip and is compatible with standard SPARC processors.
Switching is supported by hardware and can be achieved
within one processor cycle. However, a four cycle overhead
is introduced due to pipeline refill. The multithreading
policy is blocked multithreading with the switch-on-cache-
miss policy as in the MIT Sparcle processor.

2.3.5. Rhamma
The Rhamma processor [54, 55] was developed between
1993 and 1997 at the University of Karlsruhe, Germany,
as an experimental microprocessor that bridges all kinds of
latencies by a very fast context switch. The execution unit
(EU) and load/store unit (LSU) are decoupled and work
concurrently on different threads (Figure 7). A number of
register sets used by different threads are accessed by the
LSU as well as the EU. Both units are connected by FIFO
buffers for so-called continuations, each denoting the thread
tag and the instruction pointer of a thread.

The EU and the LSU are modeled by a four-stage
instruction pipeline (instruction fetch, decode, operand fetch
and a combined execute and write-back stage). The EU is
based on a conventional RISC processor, with an instruction

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

https://www.researchgate.net/publication/2312501_Sparcle_An_Evolutionary_Processor_Design_for_Large-Scale_Multiprocessors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3683571_A_Multithreaded_Processor_Designed_for_Distributed_Shared_Memory_Systems?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/36452107_Towards_Extremely_Fast_Context_Switching_in_a_Block-Multithreaded_Processor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/220771804_Retrospective_The_MIT_Alewife_Machine_Architecture_and_Performance?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/220769200_MSparc_A_Multithreaded_Sparc?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==


330 T. UNGERER, B. ROBIČ AND J. ŠILC

-

-

FIGURE 7. Overall structure of the Rhamma processor.

set that is extended by thread management instructions.
A scoreboard determines operand availability prior to the
execute/write-back stage.

The Rhamma processor combines several static and
dynamic blocked multithreading techniques. Due to the
decoupling of the execution and the load/store pipelines, a
context switch is performed if an instruction is to be fetched
but belongs to the other instruction class. The context switch
is recognized by the predecoder in the instruction fetch stage
by means of a tag in the instruction opcode (implicit-switch
technique).

In the case of a load/store, the continuation is stored in
the FIFO buffer of the LSU, a new continuation is fetched
from the EU’s FIFO buffer and the context is switched to
the register set given by the new thread tag and the new
instruction pointer. The LSU loads and stores data of a
different thread in a register set concurrently to the work
of the EU. There is a loss of one processor cycle in the
EU for each sequence of load/store instructions. Only the
first load/store instruction forces a context switch in the EU;
succeeding load/store instructions are executed in the LSU.

A context switch is also performed in the EU after
the fetch of a control flow (branch, jump or context
management) instruction (implicit-switch technique). When
context switching on a control instruction, the instruction
is still fed into the pipeline (in contrast to a load/store
instruction). In this case context switching is always
performed without the loss of a cycle.

The loss of one processor cycle in the EU when fetching
the first of a sequence of load/store instructions can be
avoided by a so-called context switch buffer (CSB) whenever
the sequence is executed the second time. The CSB is
a hardware buffer, collecting the addresses of load/store
instructions that have caused context switches. Before
fetching an instruction from the I-cache, the IF stage checks
whether the address can be found in the context switch
buffer. In that case the thread is switched immediately and
an instruction of another thread is fetched instead of the
load/store instruction. No bubble occurs.

Additionally, two further context-switching techniques
are applied. First, the availability of register values is
tested with a scoreboard in the instruction decode stages

of both pipelines. If an operand value is unavailable,
pipeline interlocking is avoided by a context switch (switch-
on-use technique). Due to full forwarding techniques
implemented in the execution pipeline, the switch-on-use
technique triggers a context switch only when a missing
operand is not loaded fast enough from memory.

Second, a so-called sync instruction performs a context
switch only when acknowledges of load/store instructions
are pending (conditional-switch technique). The sync
instruction is provided to ease the implementation of
different consistency models.

2.3.6. PL/PS Machine
The PL/PS Machine (Preload and Poststore) [58] is most
similar to the Rhamma processor. It also decouples memory
accesses from thread execution by providing separate units.
This decoupling eliminates thread stalls due to memory
accesses and makes thread switches due to cache misses
unnecessary. Threads are created when all data is preloaded
into the register set holding the thread’s context, and the
results from an execution thread are poststored. Threads are
non-blocking and each thread is enabled when the required
inputs are available (i.e. data driven at a coarse grain).
The separate load/store/sync processor performs preloads
and schedules ready threads on the pipeline. The pipeline
processor executes the threads which will require no
memory accesses. On completion the results from the thread
are poststored by the load/store/sync processor.

2.3.7. The DanSoft nanothreading approach
The nanothreading approach uses multithreading but spares
the hardware complexity of providing multiple register sets.
The DanSoft nanothreading [59] proposed for the DanSoft
processor dismisses full multithreading for a nanothread
that executes in the same register set as the main thread.
The DanSoft nanothread requires only a 9-bit PC, some
simple control logic and it resides in the same page as the
main thread. Whenever the processor stalls on the main
thread, it automatically begins fetching instructions from the
nanothread. Only one register set is available, so the two
threads must share the register set. Typically the nanothread
will focus on a simple task, such as prefetching data into
a buffer, which can be done asynchronously to the main
thread.

In the DanSoft processor, nanothreading is used to
implement a new branch strategy that fetches both sides of
a branch. A static branch prediction scheme is used, where
branch instructions include 3 bits to direct the instruction
stream. The bits specify eight levels of branch direction. For
the middle four cases, denoting low confidence on the branch
prediction, the processor fetches from both the branch target
and the fall-through path. If the branch is mispredicted in
the main thread, the back-up path executed in the nanothread
generates a misprediction penalty of only 1 to 2 cycles.

The DanSoft processor proposal is a dual-processor CMP,
each processor featuring a VLIW instruction set and the

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

https://www.researchgate.net/publication/239037936_Dansoft_develops_VLIW_design?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2530557_A_Non-Blocking_Multithreaded_Architecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==


MULTITHREADED PROCESSORS 331

nanothreading technique. Each processor contains an integer
processor, but the two processor cores share a floating-point
unit as well as the system interface.

However, the nanothread technique might also be used to
fill the instruction issue slots of a wide superscalar approach
as in SMT.

2.3.8. Microthreading
The microthreading technique of Bolychevsky et al. [60] is
similar to nanothreading. All threads share the same register
set and the same run-time stack. However, the number of
threads is not restricted to two. When a context switch arises,
the program counter is stored in a continuation queue. The
PC represents the minimum possible context information for
a given thread. Microthreading is proposed for a modified
RISC processor.

Both techniques—nanothreading as well as micro-
threading—are proposed in the context of a blocked
multithreading technique, but might also be used to fill the
instruction issue slots of a wide superscalar approach as in
SMT.

The drawback to nanothreading and microthreading is that
the compiler has to schedule registers for all threads that may
be active simultaneously, because all threads execute in the
same register set.

The solution to this problem has been recently described
by Jesshope and Luo in [61, 62]. These papers describe
the dynamic allocation of registers using vector instruction
sets and also the ease with which the architecture can be
developed as a CMP.

2.3.9. Sun’s MAJC
Sun proposed in 1999 its MAJC-5200 [63] that can be
classified as a dual-processor chip with block-multithreaded
processors. Special Java-directed instructions are provided
motivating the acronym MAJC for Micro Architecture for
Java Computing. Instruction, data, thread and process-
level parallelism is exploited in the basic MAJC architecture
by supporting explicit multithreading (so-called vertical
multithreading), implicit multithreading (called speculative
multithreading) and chip multiprocessors. Instruction-
level parallelism is utilized by VLIW packets containing
from one to four instructions and data-level parallelism
through SIMD (single-instruction, multiple-data) instruc-
tions in particular for multimedia applications. Thread-
level parallelism is utilized through compiler-supported
explicit multithreading. The architecture allows one to
combine several multithreaded processors on a chip to
harness process-level parallelism. Single-threaded program
execution may be accelerated by speculative multithreading
with so-called microthreads that are dependent on non-
speculative threads. Virtual channels communicate shared
register values between the non-speculative thread and a
speculative microthread respectively between different mi-
crothreads with produced-consumer synchronization [64].
In the case of misspeculation the speculative microthread is
discarded.

2.3.10. Multithreaded PowerPC processor
IBM developed a multithreaded PowerPC processor, which
is used in the IBM iSeries and pSeries commercial servers.
The processor—originally code-named SStar—is called
RS64 IV and it became available for purchase in the fourth
quarter of 2000. Because of its optimization for commer-
cial server workload (i.e. on-line transaction processing,
enterprise resource planning, Web serving and collaborative
groupware) with typically large and function-rich appli-
cations, a two-threaded block-interleaving approach with
a switch-on-cache-miss model was chosen. A thread-
switch buffer, which holds up to eight instructions from the
background thread, reduces the cost of pipeline reload after
a thread switch. These instructions may be introduced into
the pipeline immediately after a thread switch. A significant
throughput increase by multithreading while adding less
than 5% to the chip area was reported in [65].

2.4. Simultaneous multithreading

Interleaved multithreading and blocked multithreading are
multithreading techniques which are most efficient when
applied to scalar RISC or VLIW processors. Combining
multithreading with the superscalar technique naturally
leads to a technique where several hardware contexts
are active simultaneously, competing each cycle for all
available resources. This technique, called simultaneous
multithreading (SMT), inherits from superscalars the
ability to issue multiple instructions each cycle; and like
multithreaded processors it contains hardware resources for
multiple contexts. The result is a processor that can issue
multiple instructions from multiple threads each cycle.

The SMT approach combines a wide superscalar
instruction issue with the multithreading approach by
providing several register sets on the processor and issuing
instructions from threads simultaneously. Therefore, the
issue slots of a wide-issue processor can be filled by
operations of several threads. Latencies occurring in the
execution of single threads are bridged by issuing operations
of the remaining threads loaded on the processor. In
principle, the full issue bandwidth can be utilized. The SMT
fetch unit can take advantage of the interthread competition
for instruction bandwidth in two ways. First, it can partition
this bandwidth among the threads and fetch from several
threads each cycle. In this way, it increases the probability
of fetching only non-speculative instructions. Second, the
fetch unit can be selective about which threads it fetches.
For example, it may fetch those that will provide the most
immediate performance benefit (see the ICOUNT feedback
technique in SMT at the University of Washington below).
SMT processors can be organized in two ways.

• Resource sharing. Instructions of different threads
share all resources like the fetch buffer, the physical
registers for renaming registers of different register
sets, the instruction window and the reorder buffer.
Thus SMT adds minimal hardware complexity to con-
ventional superscalars; hardware designers can focus
on building a fast single-threaded superscalar and add

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

https://www.researchgate.net/publication/3837398_Micro-threading_a_new_approach_to_future_RISC?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3888201_Implementing_an_efficient_vector_instruction_set_in_a_chipmulti-processor_using_micro-threaded_pipelines?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3351256_Dynamic_scheduling_in_RISC_architectures?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==


332 T. UNGERER, B. ROBIČ AND J. ŠILC

multithread capability on top. The complexity added to
superscalars by multithreading includes the thread tag
for each internal instruction representation, multiple
register sets and the abilities of the fetch and the retire
units to fetch/retire instructions of different threads.

• Resource replication. The second organizational
form replicates all internal buffers of a superscalar
such that each buffer is bound to a specific thread.
Instruction fetch, decode, rename and retire units may
be multiplexed between the threads or be duplicated
themselves. The issue unit is able to issue instructions
of different instruction windows simultaneously to the
execution units. This form of organization adds more
changes to the organization of superscalar processors
but leads to a natural partitioning of the instruction
window, and simplifies the issue and retire stages.

Thread-level parallelism can come from either multi-
threaded, parallel programs or from multiple, independent
programs in a multiprogramming workload, while ILP is
utilized from the individual threads. Because a SMT
processor simultaneously exploits coarse- and fine-grained
parallelism, it uses its resources more efficiently and thus
achieves better throughput and speedup than single-threaded
superscalar processors for multithreaded (or multiprogram-
ming) workloads. The trade-off is a slightly more complex
hardware organization.

The main drawback to SMT may be that it complicates the
issue stage, which is always central to the multiple threads.
A functional partitioning as demanded for processors of the
109-transistor era cannot be reached easily.

Projects using different configurations of simultaneous
multithreading are discussed below.

2.4.1. MARS-M
The MARS-M multithreaded computer system [66] was
developed and manufactured within the Russian Next-
Generation Computer Systems program during 1982–1988.
The MARS-M was the first system where the technique
of simultaneous multithreading was implemented in a
real design. The system has a decoupled multiprocessor
architecture with execution, address, control, memory and
peripheral multithreaded subsystems working in parallel and
communicating via multiple register FIFO queues. The
execution and address subsystems are multiple-unit VLIW
processors with simultaneous multithreading. Within each
of these two subsystems up to four threads can run in
parallel on their hardware contexts allocated by the control
subsystem, while sharing the subsystem’s set of pipelined
functional units and resolving resource conflicts on a cycle-
by-cycle basis. The control processor uses interleaved
multithreading with a zero-overhead context switch upon
issuing a memory load operation. In total, up to 12
threads can run simultaneously within MARS-M with a peak
instruction issue rate of 26 instructions per cycle. Medium
scale integrated (MSI) and large scale integrated (LSI) ECL
elements with a minimum delay of 2.5 ns are used to
implement processor logic. There are 739 boards, each of
which can contain up to 100 ICs mounted on both sides.

2.4.2. Matsushita Media Research Laboratory processor
The multithreaded processor of the Media Research
Laboratory of Matsushita Electric Ind. (Japan) was another
pioneering approach to SMT [67]. Instructions of different
threads are issued simultaneously to multiple execution
units. Simulation results on a parallel ray-tracing application
showed that, using eight threads, a speedup of 3.22 in
the case of one load/store unit and 5.79 in the case of
two load/store units can be achieved over a conventional
RISC processor. However, caches or translation lookaside
buffers (TLBs) are not simulated, nor is a branch prediction
mechanism.

2.4.3. Multistreamed Superscalar
Serrano et al. [68, 69] at the University of Santa Barbara,
CA, extended the interleaved multithreading (then called
multistreaming) technique to a general purpose superscalar
processor architecture and presented an analytical model
of multithreaded superscalar performance, backed up by
simulation.

2.4.4. Irvine Multithreaded Superscalar
This multithreaded superscalar processor approach, devel-
oped at the University of California at Irvine, combines
out-of-order execution within an instruction stream with the
simultaneous execution of instructions of different instruc-
tion streams [70, 71]. A particular superscalar processor
called the Superscalar Digital Signal Processor (SDSP)
is enhanced to run multiple threads. The enhancements
are directed by the goal of minimal modification to the
superscalar base processor. Therefore, most resources on the
chip are shared by the threads, as for instance the register
file, reorder buffer, instruction window, store buffer and
renaming hardware. Based on simulations a performance
gain of 20–55% due to multithreading was achieved across
a range of benchmarks.

A multithreaded superscalar processor model was evalu-
ated in [72] using several video decode, picture processing
and signal filter programs as workloads. The programs
were parallelized at the source code level by partitioning
the main loop and distributing the loop iterations to several
threads. The rather disappointing speedup that was reported
for multithreading results from algorithmic restrictions and
from the already high IPC in the single-threaded model.
The latter is only possible because multimedia instructions
were not used. Otherwise a large part of the IPC in
the single-threaded model would be hidden by the SIMD
parallelism within the multimedia instructions.

2.4.5. SMT at the University of Washington
The SMT processor architecture [73], proposed in 1995 at
the University of Washington, Seattle, WA, coined the term
simultaneous multithreading. Simulations were conducted
to evaluate processor configurations of an up to 8-threaded
and 8-issue superscalar based on an enhanced Alpha
21164 processor architecture. This maximum configuration
showed a throughput of 6.64 IPC due to multithreading using

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

https://www.researchgate.net/publication/242453429_Multithreaded_extensions_enhance_multimedia_performance?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3668663_A_fine-grain_multithreading_superscalar_architecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3629995_Performance_study_of_a_multithreaded_superscalar_microprocessor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/242609872_Increasing_superscalar_performance_through_multistreaming?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/226113566_The_El'brus-3_and_MARS-M_Recent_advances_in_Russian_high-performance_computing?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3661213_Simultaneous_multithreading_Maximizing_on-chip_parallelism?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3558024_Performance_estimation_of_multistreamed_superscalar_processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==


MULTITHREADED PROCESSORS 333

D
-cach

e

I-cache

In
teg

er
R

eg
ister

F
ile

F
lo

atin
g
-p

o
in

t
R

eg
ister

F
ile

Floating-
point
Instruction
Queue

Integer
Instruction
Queue

Register
Renaming

Fetch
Unit Decode

Integer
Load/store Units

Floating-point
Units

FIGURE 8. SMT processor architecture.

the SPEC92 benchmark suite and assuming a processor with
32 execution units (among them multiple load/store units).

The next approach was based on a hypothetical out-
of-order instruction issue superscalar microprocessor that
resembles the MIPS R10000 and HP PA-8000 [36,
74]. This approach evaluated more realistic processor
configurations, and presented implementation issues and
solutions to register file access and instruction scheduling
for a minimal change to superscalar processor organization.

In the simulations of the latter architectural model
(Figure 8) eight threads and an eight-issue superscalar
organization are assumed. Eight instructions are decoded,
renamed and fed to either the integer or floating-point
instruction window. Unified buffers are used in contrast
to thread-specific queues in the Karlsruhe Multithreaded
Superscalar approach (see below). When operands become
available, up to eight instructions are issued out of order
per cycle, executed and retired. Each thread can address
32 architectural integer (and floating-point) registers. These
registers are renamed to a large physical register file of 356
physical registers. The larger SMT register file requires a
longer access time. To avoid increasing the processor cycle
time, the SMT pipeline is extended by two stages to allow
two-cycle register reads and two-cycle writes. Renamed
instructions are placed into one of two instruction windows.
The 32-entry integer instruction window handles integer
and all load/store instructions, while the 32-entry floating-
point instruction window handles floating-point instructions.
Three floating-point and six integer units are assumed. All
execution units are fully pipelined and four of the integer
units also execute load/store instructions. The I- and
D-caches are multiported and multibanked, but are common
to all threads.

The multithreaded workload consists of a program
mix of SPEC92 benchmark programs that are executed
simultaneously as different threads. The simulations
evaluated different fetch and instruction issue strategies.

An RR.2.8 fetching scheme to access the multiported
I-cache, i.e. in each cycle two times eight instructions are
fetched in a round-robin policy from two different threads,
was superior to other schemes like RR.1.8, RR.4.2 and
RR.2.4 with less fetching capacity. As a fetch policy, the

ICOUNT feedback technique, which gives highest fetch
priority to the threads with the fewest instructions in the
decode, renaming and queue pipeline stages, proved superior
to the BRCOUNT scheme which gives highest priority to
those threads that are least likely to be on a wrong path,
and the MISSCOUNT scheme which gives priority to the
threads that have the fewest outstanding D-cache misses.
The IQPOSN policy that gives lowest priority to the oldest
instructions by penalizing those threads with instructions
closest to the head of either the integer or the floating-
point queue is nearly as good as ICOUNT, and better than
BRCOUNT and MISSCOUNT, which are all better than
round-robin fetching. The ICOUNT.2.8 fetching strategy
reached an IPC of about 5.4 (the RR.2.8 only reached about
4.2). Most interesting is the fact that neither mispredicted
branches nor blocking due to cache misses, but a mix of both
and perhaps some other effects proved to be the best fetching
strategy.

In a single-threaded processor, choosing instructions for
issue that are least likely to be on a wrong path is always
achieved by selecting the oldest instructions, those deepest
into the instruction window. For the SMT processor several
different issue strategies have been evaluated, such as oldest
instructions first, speculative instructions last and branches
first. Issue bandwidth is not a bottleneck and all strategies
seem to perform equally well, so the simplest mechanism
is to be preferred. Also doubling the size of instruction
windows (but not the number of searchable instructions for
issue) has no significant effect on the IPC. Even an infinite
number of execution units increases throughput by only
0.5%.

Further research looked at compiler techniques for SMT
[75] and at extracting threads of a single program designed
for multithreaded execution on an SMT [76]. The threaded
multipath execution model, which exploits existing hard-
ware on a SMT processor to execute simultaneously al-
ternate paths of a conditional branch in a thread, is pre-
sented in [77]. Threaded Multiple Path Execution employs
eager execution of branches in an SMT processor model.
It extends the SMT processor by introducing additional
hardware to test for unused processor resources (unused
hardware threads), a confidence estimator, mechanisms for

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

https://www.researchgate.net/publication/3758398_Threaded_multiple_path_execution?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==


334 T. UNGERER, B. ROBIČ AND J. ŠILC

-

-

FIGURE 9. The SMT Multimedia processor (IF, fetch unit; ID, decode unit; RI, rename/issue unit; RT, retirement unit; WB, write-back
unit; BTAC, branch target address cache).

fast starting and finishing threads, priorities attached to the
threads, support for speculatively executed memory access
operations and an additional bus for distributing the contents
of the register mapping table (Mapping Synchronization Bus
(MSB)). If the hardware detects that a number of processor
threads are not processing useful instructions, the confidence
estimator is used to decide whether only one continuation of
a conditional branch should be followed (high confidence)
or both continuations should be followed simultaneously
(low confidence). The MSB is used to provide a thread
that starts execution of one continuation speculatively with
the valid register map. Such register mappings between
different register sets incur an overhead of 4–8 cycles.
Such a speculative execution increases single program
performance by 14–23%, depending on the misprediction
penalty, for programs with a high branch misprediction
rate. Instruction recycling has been explored on a multi-
path SMT processor proposed in [78]. Recently, SMT
has been evaluated with database workloads [79] achieving
roughly a three-fold increase in instruction throughput with
an eight-threaded SMT over a single-threaded superscalar
with similar resources.

Another recent paper of Seng et al. [80] investigates
use of simultaneous multithreading for reduction of power
consumption. Harnessing the extra parallelism provided by
multiple threads allows the processor to rely much less on
speculation. They showed that a SMT processor utilizes up
to 22% less energy per instruction than a single-threaded
architecture.

2.4.6. Karlsruhe Multithreaded Superscalar processor
While the SMT processor at the University of Washington
surveys enhancements of the Alpha 21164 processor, the
Multithreaded Superscalar processor approach from the
University of Karlsruhe [81, 82] is based on an extended
PowerPC 604 processor with thread-local instruction, issue
and reorder buffers (resource replication model instead

of the resource sharing model used in the SMT at the
University of Washington). Both approaches, however, are
similar in their instruction-issuing policy.

Using an instruction mix with 20% load and store
instructions, the performance results show, for an eight-issue
processor with four to eight threads, that two instruction
fetch units, two decode units, four integer units, 16 rename
registers, four register ports and completion queues with 12
slots are sufficient. The single load/store unit proves the
principal bottleneck because it cannot be easily duplicated.
The multithreaded superscalar processor (eight-threaded,
eight-issue) is able to hide completely latencies caused by
4–2–2–2 burst cache refills (4–2–2–2 assumes that four
times 64-bit portions are transmitted over the memory bus,
the first portion reaches the processor 4 cycles after the cache
miss indication, the next portion 2 cycles later, etc.). It
reaches the maximum throughput of 4.2 IPC that is possible
with a single load/store unit.

2.4.7. SMT Multimedia processor
Subsequent SMT research at the University of Karlsruhe
has explored microarchitecture models for a SMT processor
with multimedia enhancements [83, 84]. The SMT Multi-
media processor (see Figure 9) features single or multiple
fetch (IF) and decode (ID) units, a single rename/issue
(RI) unit, multiple, decoupled reservation stations, multiple
execution units, in particular up to four combined
integer/multimedia units, a complex integer/multimedia
unit, a branch unit, separate local and global load/store units,
a single retirement (RT) and write-back (WB) unit, rename
registers, a BTAC and separate I- and D-caches that are
shared by all active threads. Thread-specific instruction
buffers (between IF and ID), issue buffers (between ID
and RI) and reorder buffers (in front of RT) are employed.
Each thread executes in a separate architectural register
set. However, there is no fixed allocation of threads
to (execution) units. The pipeline performs an in-order

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

https://www.researchgate.net/publication/3788161_Instruction_recycling_on_a_multiple-path_processor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/223219911_Performance_of_simultaneous_multithreaded_multimedia-enhanced_processors_for_MPEG-2_video_decompression?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3826159_MPEG-2_video_decompression_on_simultaneous_multithreaded_multimedia_processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2806296_Power-Sensitive_Multithreaded_Architecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/36452112_Identifying_bottlenecks_in_a_multithreaded_superscalar_processor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==


MULTITHREADED PROCESSORS 335

instruction fetch, decode, rename/issue to reservation
stations, out-of-order dispatch from the reservation stations
to the execution units, out-of-order execution and an in-order
retirement and write-back.

The rename/issue stage simultaneously selects instruc-
tions from all issue buffers up to its maximum issue
bandwidth (SMT feature). The integer units are enhanced
by multimedia processing capabilities (multimedia unit
feature). A thread control unit performs thread start, stop,
synchronization and I/O operations. A local RAM memory
is included which is accessed by the local load/store unit.

The simulations showed that a single-threaded, eight-
issue maximum processor (assuming an abundance of
resources) reaches an IPC count of only 1.60, while
an eight-threaded, eight-issue processor reaches an IPC
of 6.07. A more realistic processor model reaches an
IPC of 1.21 in the single-threaded eight-issue and 3.11
in the eight-threaded, eight-issue model. Increasing the
issue bandwidth from 4 to 8 yields only a marginal gain
(except for the four- to eight-threaded maximum processor).
Increasing the number of threads from single to two- or
four-threaded yields a high gain for the two- to eight-issue
model and a significant gain for the eight-threaded model.
The steepest performance increases arise for the four-issue
model from the single-threaded (IPC of 1.21) to the two-
threaded (IPC of 2.07) and to the four-threaded (IPC of 2.97)
cases. A two-threaded, four-issue and a four-threaded, four-
issue processor configuration (as realistic next-generation
processors) were suggested in [83].

The most surprising finding was that smaller reservation
stations for the thread unit and the global and the local
load/store units, as well as smaller reorder buffers, increased
the IPC value for the multithreaded models. Intuition
suggests a better performance with larger buffers. However,
large reservation stations (and large reorder buffers) draw
too many highly speculative instructions into the pipeline.
Smaller buffers limit the speculation depth of fetched
instructions and lead to the fact that only non-speculative
instructions or instructions with low speculation depth
are fetched, decoded, issued and executed in a SMT
processor. An abundance of speculative instructions hurts
the performance of a SMT processor. Another reason for
the negative effect of large reorder buffers and of large
reservation stations for the load/store and thread control
units lies in the fact that these instructions have a long
latency and typically have two to three integer instructions
as consumers. The effect is that the consuming integer
instructions eat up space in the integer reservation station,
thus blocking instructions from other threads from entering
it. This multiplication effect is made even worse by
a non-speculative execution of store and thread control
instructions.

Subsequent research [85] investigated a cost/benefit
analysis of various SMT multimedia processor models.
Transistor count and chip space estimations (applying the
tool described in [86]) showed that the additional hardware
cost of an eight-threaded SMT processor over a single-
threaded processor is a negligible 5% transistor increase,

but a 36% chip space increase for a 300M transistor chip
assumed for the years 2006 to 2009; it requires a 78%
increase of the transistor amount for the processor models
with realistic memory hierarchy and 21% more for the
contemporary scaled processor models. The chip space
increase of the eight-threaded, eight-issue over the single-
threaded, eight-issue model with realistic memory hierarchy
is about 207%, in the case of the contemporary scaled
processor models it is 63%. Even more favorable is
the comparison of the single-threaded, eight-issue models
with the four-threaded, eight-issue SMT model. Maximum
processor models require a 2% increase in transistor count
and a 9% increase in chip space, but they yield a threefold
speedup; the models with realistic memory hierarchy require
a 31% increase in transistor count and a 53% increase in
chip space, but they yield a nearly twofold speedup; and
the contemporary scaled models require a 9% increase in
transistor count and a 27% increase in chip space, resulting
in a 1.5-fold speedup.

Similar results were reached by Burns and Gaudiot [87]
who estimated the layout area for SMT. They identified
which layout blocks are affected by SMT, determined the
scaling of chip space requirements using an O-calculus
and compared SMT versus single-threaded processor space
requirements by scaling a R10000-based layout to 0.18 µm
technology.

2.4.8. SMV processor
The Simultaneous Multithreaded Vector (SMV) architecture
[88], designed at the Polytechnic University of Catalunya
(Barcelona, Spain), combines simultaneous multithreaded
execution and out-of-order execution with an integrated
vector unit and vector instructions.

Figure 10 depicts the SMV architecture. The fetch engine
selects one of eight threads and fetches four instructions
on its behalf. The decoder renames the instructions, using
a per-thread rename table, and then sends all instructions
to several common execution queues, each instruction to
one queue. Inside the queues, the instructions of different
threads are indistinguishable and no thread information
is kept except in the reorder buffer and memory queue.
Register names preserve all dependences. Independent
threads use independent rename tables, which prevents false
dependences and conflicts from occurring. The vector unit
has 128 vector registers, each holding 128 64-bit registers,
and it has four general-purpose independent execution units.
The number of registers is the product of the number of
threads and the number of physical registers required to
sustain good performance on each thread.

2.4.9. Alpha 21464
Compaq unveiled its Alpha EV8 21464 proposal in
1999 [89], a four-threaded, eight-issue SMT processor,
which closely resembles the SMT processor proposed
in [76]. The processor proposal features out-of-order
execution, a large on-chip L2 cache, a direct RAMBUS
interface and an on-chip router for system interconnect

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

https://www.researchgate.net/publication/242437057_Simultaneous_multithreading_multiplying_alpha_performance?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2453128_On_Performance_Transistor_Count_and_Chip_Space_Assessment_of_Multimedia-enhanced_Simultaneous_Multithreaded_Processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3826159_MPEG-2_video_decompression_on_simultaneous_multithreaded_multimedia_processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3214970_Exploiting_instrucion-_and_data-level_parallelism?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3838548_Quantifying_the_SMT_layout_overhead-does_SMT_pull_its_weight?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==


336 T. UNGERER, B. ROBIČ AND J. ŠILC

-

Int Fpt Vect

FIGURE 10. SMV architecture (FPU, floating-point unit; ALU, arithmetic/logic unit; VFU, vector functional unit).

of a directory based, cache-coherent non-uniform memory
access (NUMA) multiprocessor. This 250 million transistor
chip was planned for year 2003. In the meantime, the project
has been abandoned, as Compaq sold the Alpha processor
technology to Intel.

2.4.10. Blue Gene
Simultaneous multithreading is mentioned as a processor
technique for the building block of the IBM Blue
Gene system—a five-year effort to build a petaflops
supercomputer started in December 1999 [90].

3. FURTHER APPROACHES

3.1. Implicit multithreading

Another set of solutions is to apply an even higher degree
of speculation in combination with a functional partitioning
of the processor. Here thread-level parallelism is utilized,
typically in combination with thread-level speculation. A
thread in such architectures refers to any contiguous region
of the static or dynamic instruction sequence. Examples of
such architectural approaches are:

• the multiscalar;
• the trace processor;
• the single-program speculative multithreading architec-

ture;
• the superthreaded architecture;
• the dynamic multithreading processor;

• the speculative multithreaded processor;
• the MEM-slicing algorithm in the context of the Atlas

CMP; and
• the technique of helper threads as, for example, in

simultaneous subordinate microthreading.

Multiscalar processors [16, 17, 18, 19] divide a single-
threaded program into a collection of tasks (in the following
identified with threads) that are distributed to a number of
ring-connected parallel processing units under the control of
a single hardware sequencer. Each of the processing units
fetches and executes instructions belonging to its assigned
task. A static program is represented as a control flow graph
(CFG), where basic blocks are nodes and arcs represent the
flow of control from one basic block to another. Dynamic
program execution can be viewed as walking through the
CFG, generating a dynamic sequence of basic blocks which
have to be executed for a particular run of the program.
The multiscalar paradigm supports two forms of speculation:
control speculation, which is used by a hardware thread
sequencer, and data dependence speculation, speculating
that a load does not depend on instructions executing in
predecessor threads. If a control speculation turns out to be
incorrect, the processor discards the speculative thread and
all its following threads. For data dependence speculation
a thread loads data from memory with the expectation that
the predecessor threads will not store a value to the same
memory location [91]. An address resolution buffer (ARB)

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

https://www.researchgate.net/publication/225092540_Blue_Gene_a_vision_for_protein_science_using_a_petaflop_supercomputer?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2885022_Memory_Dependence_Prediction?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/246906623_Multiscalar_Another_fourth-generation_processor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/200775321_The_Multiscalar_Architecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3661214_Multiscalar_processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3784414_Task_selection_for_a_multiscalar_processor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==


MULTITHREADED PROCESSORS 337

is provided to hold speculative memory operations and to
detect violations of memory dependences. The ARB checks
that the speculation was correct, squashing instructions if
it was not. The speculative versioning cache (SVC) [92]
extends the ARB concept by using distributed caches instead
of a centralized buffer. SVC eliminates the latency and
bandwidth problems of the ARB.

Trace processors [20, 21, 22] partition a processor into
multiple distinct cores—similar to multiscalar—and break
the program into traces. Traces are collected by a trace
cache [1, 93] which is a special instruction cache that
captures dynamic instruction sequences. One core of a trace
processor executes the current trace while the other cores
execute future traces speculatively.

The superthreaded architecture [24, 25] applies a thread
pipelining execution model that allows threads with data
and control dependences to be executed in parallel. As in
the multiscalar approach, a compiler statically partitions the
CFG of a program into threads to be executed on the thread
processing units of the superthreaded architecture. The
thread processing units are connected by a unidirectional bus
to exchange data that arise from loop-carried dependences,
similar to the multiscalar proposal. The superthreading
technique is designed for the exploitation of loop-level
parallelism where each interaction is executed within
another thread. The superthreaded architecture, like the
multiscalar approach, is closely related to a CMP approach.
However, both the superthreaded and the multiscalar
approaches use more closely coupled processing elements
and are designed to increase single-thread performance
using a compiler-supported task partitioning.

The multiscalar as well as the single-program speculative
multithreading architecture [23] support speculation on
data dependences that are unknown at compile time. In
contrast, the superthreaded processor does not speculate
on data dependences. The processor performs run-time
data dependence checking for load operations and, if a
load operation is detected to be data dependent on a store
operation of a predecessor thread, it waits for the stored
data from the predecessor thread. This technique avoids
squashing caused by data dependence violations as in the
multiscalar and it reduces the hardware complexity of
detecting memory dependence violations.

The dynamic multithreading processor [26] has hardware
to create threads at procedure and loop boundaries and
executes the threads speculatively on a simultaneous
multithreaded pipeline. A thread spawns a new thread when
it encounters a procedure call or a backward branch. The
latter is speculatively treated as the end of a loop. Thread-
level dataflow and data value prediction are used. Loads
are issued speculatively to memory assuming that there are
no conflicting stores from prior threads. Data misprediction
recovery is organized using large trace buffers that hold all
the speculative instructions and results.

The speculative multithreaded processor [27, 94] also
uses hardware to partition a program into threads that
execute successive iterations of the same loop. A loop
detection scheme to dynamically detect loops without

compiler or user intervention with the aim of obtaining
multiple threads from a sequential program is presented
in [94].

One essential question for implicit multithreaded archi-
tectures is how to partition the program and when to spawn
a speculative thread. Codrescu and Wills [95] investigate
different dynamic partitioning schemes, in particular thread-
generation by dynamically parallelizing loop iterations,
procedure calls or using fixed instruction length blocks.
Their results suggest memory instructions as the best
instruction type to use as slice instructions to begin and break
speculative threads. A new, flexible algorithm—called the
MEM-slicing algorithm—is proposed that generates a thread
starting from a slice instruction up to a maximum thread
length. All approaches are evaluated in the context of the
Atlas CMP.

Another step in the direction of multithreading is
simultaneous subordinate microthreading (SSMT) [30]
which is a modification of superscalars to run threads at
microprogram level concurrently. A new microthread is
spawned either event-driven by hardware or by an explicit
spawn instruction. The subordinate microthread could be
used, for example, to improve branch prediction of the
primary thread or to prefetch data.

Similar approaches apply multithreading for event-
handling of internal events by rapidly spawning helper
threads that execute simultaneously to the main thread
[96, 97]. Speculative slices may be executed as helper
threads to prefetch data into the cache and to generate branch
predictions without affecting the execution state of the
processors [98]. The speculative precomputation technique
uses idle thread contexts in a multithreaded architecture
based on a SMT Itanium model to trigger future cache
miss events by pre-computing future memory accesses
and prefetching these data [99]. Similarly, software-
controlled pre-execution for speculative address generation
and prefetching is proposed by Luk [100] using idle threads
on an Alpha 21464-like SMT processor.

We call all these architectures implicit multithreaded
architectures because they concurrently execute several
threads from a single sequential program. These archi-
tectures share with SMT the ability to execute several
(in this case implicitly generated) threads concurrently.
However, the microarchitectures of these approaches are
often organized differently from SMT. In SMT instructions
of different threads are issued simultaneously from a single
central instruction window. The multiscalar, trace and
superthreaded approaches feature a decentralized ILP execu-
tion model with control-dependence-based decentralization
[101]. A functional partitioning within the architecture
splits execution into several closely coupled execution units
where each execution unit is responsible for its own thread
execution. Such a decentralized ILP execution model leads
to a natural functional partitioning within the processors.
By its decentralized organization it is potentially better
suited to the requirement that future processors have short
on-chip wires. The microarchitecture of such approaches
is therefore often more closely related to CMPs than to

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

https://www.researchgate.net/publication/3905732_Tolerating_memory_latency_through_software-controlled_pre-execution_in_simultaneous_multithreading_processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3905734_Execution-based_prediction_using_speculative_slices?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3830425_The_use_of_multithreading_for_exception_handling?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/36172528_Simultaneous_subordinate_microthreading?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3733106_Control_speculation_in_multithreaded_processors_through_dynamic_loop_detection?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3733106_Control_speculation_in_multithreaded_processors_through_dynamic_loop_detection?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2497137_An_Empirical_Study_of_Decentralized_ILP_Execution_Models?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2954812_Trace_processors_Moving_to_fourth-generation_microarchitectures?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3044135_Concurrent_event_handling_through_multithreading?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3826153_On_dynamic_speculative_thread_partitioning_and_the_MEM-slicingalgorithm?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3668653_The_superthreaded_architecture_thread_pipelining_with_run-time_data_dependence_checking_and_control_speculation?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/221235982_Speculative_Multithreaded_Processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3784404_A_dynamic_multithreading_processor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3700199_Improving_Superscalar_Instruction_Dispatch_And_Issue_By_Exploiting_Dynamic_Code_Sequences?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==


338 T. UNGERER, B. ROBIČ AND J. ŠILC

SMT. Implicit multithreaded architectures in the forms of
speculative multithreading and helper threads are currently
hot research topics.

3.2. Scheduled dataflow

In contrast to most multithreading approaches that search for
better performance at the expense of an increased hardware
complexity, the scheduled dataflow (SDF) of Kavi et al.
[102] defines a simple, yet powerful multithreaded execution
paradigm that is based on dataflow concepts.

A root of multithreaded execution is the coarse-
grained dataflow execution model that relies on non-
blocking threads generated from single-assignment dataflow
programs. Threads start execution as soon as all operands
are available. Such threads may be generated with the aim
of decoupling memory accesses from execute instructions.

Kavi et al. [102] present a decoupled scheduled dataflow
architecture as a redesign of the PL/PS Machine [58]. A
(dataflow) program is compiler-partitioned into functional
execution and memory-access threads. All memory accesses
are decoupled from the (functional execution) threads. Data
is pre-loaded into the thread’s context (registers) and all
results are post-stored after the completion of the thread’s
execution. The decoupling of memory accesses from thread
execution requires a separate unit to perform the necessary
pre-loads and post-stores and to control the allocation of
hardware thread contexts to enabled threads.

The analytical analysis showed that the SDF processor
can outperform other classical dataflow architectures, hybrid
models and decoupled multithreaded architectures (e.g. the
Rhamma processor).

3.3. Dual path branch execution models

A number of research projects survey eager execution—dual
path execution of branches. They extend either superscalar
or SMT processors. All need some kind of architecture that
is able to pursue two threads in parallel.

The nanothreaded DanSoft processor (see Section 2.3.7)
implements a multiple path execution model using confi-
dence information from a static branch prediction mecha-
nism. The information is stored in some additional branch
opcode bits. The hardware dynamically decides whether
dual path execution should be applied using the information
from these opcode bits.

The threaded multipath execution model exploits Idle
thread slots in a SMT processor to execute simultaneously
alternate paths of a conditional branch (see Section 2.4.5).

The Simultaneous Speculation Scheduling (S3) [103,
104, 105, 106] is a combined compiler and architecture
technique to control multiple path execution. The S3
technique can be applied to dual path branch speculation
in the case of unpredictable branches and to multiple
path speculative execution of loop iterations. Loop-
carried memory dependences that cannot be disproven by
the compiler are handled by data dependence speculation.
Architectural requirements are the ability to pursue more

than one thread concurrently and three new instructions
(fork, sync, wait).

Other eager execution techniques are Selective Dual
Path Execution [107], Limited Dual Path Execution [108],
PolyPath architecture [29] and Threaded Multiple Path
Execution [77]. The Disjoint Eager Execution technique
[109] assigns resources to branch paths with the highest
cumulative execution probabilities.

Closely related to SMT are architectural proposals
that only slightly enhance a superscalar processor by the
ability to pursue two or more threads only for a short time.
In principle, predication is the first step in this direction.
A fully predicated instruction set like, for example, IA-64
and many signal processors permit the system to pursue two
branch paths simultaneously by defining two virtual threads.
However, no additional instruction pointer or register
window is applied. Predicated instructions are fetched,
decoded and dispatched to the instruction window(s). In the
most common form of predication, predicated instructions
with unresolved predicates cannot be executed, because the
predicate is treated as additional data register input and the
instruction is only issued to the reservation station/execution
unit if the predicate is computed and true.

An enhanced form of predication is able to issue and
execute a predicated instruction even if the predicate is
not yet solved. Consequently, all instructions with a
false predicate are discarded in the retirement stage, all
instructions with a true predicate are committed. The latter
form of predication allows one to view the predicate as a
form of tagging of the instruction stream as is necessary
for multithreaded processors to distinguish instructions of
different threads in the pipeline. However, only a single
instruction pointer is still used, all instructions are still in
one instruction stream—the threads are still virtual.

A further step is dynamic predication [28] as applied
for the Polypath architecture [29] that is an enhanced
superscalar to handle multiple threads internally. The
PolyPath architecture enhances a superscalar processor by
a limited multi-path execution feature to employ eager
execution of branches. It does not support the execution
of independent threads in hardware, but it feeds instructions
from both possible continuations of a conditional branch into
the superscalar pipeline. This speculation on the outcome
of the conditional branches is completely implemented in
hardware. The instructions passing the pipeline are extended
by a context tag. In our opinion, the PolyPath processor
is in fact a multithreaded architecture since all instructions
with the same tag can be considered to belong to the same
virtual thread. However, the architecture cannot benefit
from coarse-grained parallelism. Extending the instructions
with a context tag has to be done in all processor resources
(instruction window, store queues, etc.). Beside this
tagging mechanism, the PolyPath architecture implements
a Jacobsen, Rotenberg and Smith (JRS) confidence
estimator [110]. If the confidence of the prediction of a
branch is low, both possible continuations are speculatively
executed; otherwise, a normal check-point mechanism is
used to follow only the more likely outcome of the branch.

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

https://www.researchgate.net/publication/2536493_Execution_and_Cache_Performance_of_the_Scheduled_Dataflow_Architecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2536493_Execution_and_Cache_Performance_of_the_Scheduled_Dataflow_Architecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/228744695_Limited_dual_path_execution?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3758398_Threaded_multiple_path_execution?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2339242_A_Compiler_Technique_for_Speculative_Execution_of_Alternative_Program_Paths_Targeting_Multithreaded_Architectures?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2284371_Compiler_Supported_Speculative_Execution_on_SMT_Processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3675414_Assigning_confidence_to_conditional_branch_predictions?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2740919_Disjoint_Eager_Execution_An_Optimal_Form_of_Speculative_Execution?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2281316_Static_Speculation_Dynamic_Resolution?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2529630_Selective_Dual_Path_Execution?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2530557_A_Non-Blocking_Multithreaded_Architecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==


MULTITHREADED PROCESSORS 339

3.4. Multithreading approaches for signal processing
and real-time event handling

The rapid context-switching ability of the multithreading
technique leads to approaches that apply multithreading in
new areas, in particular embedded real-time systems and
signal processing.

Recently, multithreading has been proposed in future
high-end processors for event-handling of internal events by
rapidly spawning helper threads that execute simultaneously
to the main thread (see Section 3.1). However, the fast
context-switching ability of multithreading has rarely been
explored in the context of microcontrollers for the handling
of external hardware events in embedded systems.

3.4.1. Multithreading technique for signal processors
Wittenburg et al. [111] looked at the application of the
SMT technique to signal processors using combining
instructions that are applied to registers of several register
sets simultaneously instead of multimedia operations.
Simulations with a Hough transformation as workload
showed a speedup of up to six compared to a single-threaded
processor without multimedia extensions.

3.4.2. The EVENTS mechanism
Metzner and Niehaus [112] propose the use of multithreaded
processors for real-time event handling. Several block-
multithreaded MSparc processors (see Section 2.3.4) are
supervised by an processor-external thread scheduler, called
EVENTS [112, 113], which triggers contest switches due
to real-time scheduling techniques and assigns computation-
intensive real-time threads to the different MSparc proces-
sors. The EVENTS mechanism is implemented as a field of
field programmable gate-arrays (FPGAs).

In contrast to EVENTS the Komodo microcontroller
applies real-time scheduling algorithms on an instruction-
by-instruction basis deeply embedded in the multithreaded
processor core.

3.4.3. Komodo microcontroller
The Komodo microcontroller [114, 115], is a multithreaded
Java microcontroller aimed at embedded real-time systems
with a hardware event handling mechanism that allows
the handling of simultaneous overlapping events with hard
real-time requirements. The main purpose for the use of
multithreading within the Komodo microcontroller is not
latency utilization, but extremely fast reaction on real-time
events.

Real-time Java threads are used as interrupt service
threads (ISTs)—a new hardware event handling mechanism
that replaces the common interrupt service routines (ISRs).
Occurrence of an event activates an assigned IST instead
of an ISR. The Komodo microcontroller supports the
concurrent execution of multiple ISTs, zero-cycle overhead
context switching, and triggers ISTs by a switch-on-signal
context switching strategy.

As shown in Figure 11, the four-stage pipelined processor
core consists of an instruction-fetch unit, a decode unit, an

µROM
Priority
manager

Execute

Stack
register

set 1

Stack
register

set 2

Stack
register

set 3

Stack
register

set 4

S
ig

n
al

u
n
it

Execute

Instruction fetch

PC1 PC2 PC3 PC4

IW1 IW2 IW3 IW4

Instruction decode
Priority
manager

µROM

Operand fetch

Memory access

Operand fetch

Stack
register

set 2

Stack
register

set 1

Stack
register

set 3

Stack
register

set 4

Address

Instructions

M
em

o
ry

in
te

rf
ac

e

Address

Data

FIGURE 11. Block diagram of the Komodo microcontroller (IW,
instruction window; PC, program counter).

operand fetch unit and an execution unit. Four stack register
sets are provided on the processor chip. A Java bytecode
instruction is decoded either to a single micro-op, a sequence
of micro-ops or a trap routine is called. Each micro-op is
propagated through the pipeline with its thread ID. Micro-
ops from multiple threads can be simultaneously present in
the different pipeline stages.

The instruction fetch unit holds four program
counters (PC) with dedicated status bits (e.g. thread
active/suspended); each PC is assigned to a separate
thread. Four byte portions are fetched over the memory
interface and put in the according instruction window (IW).
Several instructions may be contained in the fetch portion,
because of the average Java bytecode length of 1.8 bytes.
Instructions are fetched depending on the status bits and fill
levels of the IWs.

The instruction decode unit contains the IWs, dedicated
status bits (e.g. priority) and counters for the implementation
of the proportional share scheme. A priority manager
decides from which IW the next instruction will be decoded.

The real-time scheduling algorithms fixed priority pre-
emptive (FPP), earliest deadline first (EDF), least laxity
first (LLF) and guaranteed percentage (GP) scheduling are
implemented in the priority manager for next instruction
selection [116]. The priority manager applies one of
the implemented scheduling schemes for IW selection.
However, latencies may result from branches or memory
accesses. To avoid pipeline stalls, instructions from threads
of less priority can be fed into the pipeline. The decode unit
predicts the latency after such an instruction and proceeds
with instructions from other IWs.

External signals are delivered to the signal unit from
the peripheral components of the microcontroller core
as, for example, timer, counter or serial interface.
The corresponding IST will be activated by the occurrence of
such a signal. As soon as an IST activation ends its assigned

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

https://www.researchgate.net/publication/228606748_MSPARC_Multithreading_in_real-time_architectures?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/228606748_MSPARC_Multithreading_in_real-time_architectures?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2252624_The_EVENTS_Approach_to_Rapid_Prototyping_for_Embedded_Control_Systems?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==


340 T. UNGERER, B. ROBIČ AND J. ŠILC

real-time thread is suspended and its status is stored. An
external signal may activate the same thread again.

Further investigations within the Komodo project [117]
cover real-time scheduling schemes on a multithreaded
processor [116], real-time garbage collection on a multi-
threaded microcontroller [118] and a distributed real-time
middleware called OSA+ [117].

4. CHIP MULTIPROCESSORS

4.1. Principal alternatives

Today the most common organizational principles for
multiprocessors are the symmetric multiprocessor (SMP),
the distributed shared memory multiprocessor (DSM) and
the message-passing shared-nothing multiprocessor [31,
119]. The SMP and the DSM multiprocessors feature a
common address space, which is implemented in the SMP
as a single global memory where each memory word can be
accessed in uniform access time by all processors (UMA,
uniform memory access). In the DSM multiprocessor a
common address space is maintained despite physically
distributed memory modules. A processor in a DSM
can access data in its local memory faster than in the
remote memory (the memory module local to another
processor). DSM multiprocessors are therefore NUMA
systems. Shared-nothing multiprocessors feature physically
distributed memory modules and no common address
space. Therefore, communication can only be performed
by passing messages between processors. Shared-nothing
multiprocessors are highly scalable but harder to program
than shared-memory multiprocessors. They are beyond the
scope of our discussion of CMPs, which, by their tight
physical coupling on a single chip, may also feature a very
tight coupling of instruction streams, usually expressed by a
common memory organization.

The principal organizational forms of multiprocessors do
not regard cache organization. Commodity microprocessors,
which are usually used today as building blocks for
multiprocessors, contain on-chip caches, often coupled
with off-chip secondary cache memories. Shared-memory
multiprocessors maintain cache coherence by a cache
coherence protocol which is a bus-snooping coherence
protocol for SMPs or a directory-based coherence protocol
for DSMs. SMPs consist of a moderate number of
commodity microprocessors with cache memories coupled
by a fast memory bus with the global memory. In the
latest SMPs the memory bus is replaced by an address bus
(necessary for bus-snooping) and a data crossbar switch for
faster transfer of cache lines. SMPs are the starting point for
CMPs.

In order to develop insight about the most appropriate
memory hierarchy level for connecting the CPUs in a CMP,
three alternatives were compared by Nayfeh et al. [120]:
a shared-main-memory multiprocessor (i.e. the typical
symmetric multiprocessor today), a shared-secondary-cache
multiprocessor and a shared-primary-cache multiprocessor.
They found that, when applications have a high or moderate

degree of interprocessor communication, both shared-
primary-cache and shared-secondary-cache architectures
perform similarly and outperform the shared-main-memory
architecture substantially. There are two reasons for this.
First, the shared cache was assumed to be large enough
to accommodate most of the working sets of independent
threads running on different CPUs, so that the cache
miss rate is low. Second, when there is interprocessor
communication, it is handled very efficiently in the shared
(primary or secondary) cache. Even for applications with
little or no interprocessor communication, the performance
of the shared-primary-cache architecture is still slightly
better than the shared-main-memory architecture.

As examples of CMPs, we will describe the Hydra chip
multiprocessor [121, 122], a research processor currently
being designed at Stanford University in an effort to evaluate
the shared-secondary-cache CMP, and the IBM POWER4
chip [123] as a commercial CMP. These are not the first
projects on CMP design, though. In 1994, Texas Instruments
introduced the TMS320C80 multimedia video processor
(MVP) [124], a variant of the shared-primary-cache CMP
which contained five processors on a single chip.

4.1.1. TI TMS320C8x multimedia video processors
The Texas Instruments TMS320C8x (or ’C8x) family
of processors are CMPs suitable for system-level and
embedded implementations [124]. Applications include
image processing, 2-D and 3-D graphics, audio/video digital
compression and playback, real-time encryption/decryption
and digital telecommunications. The processor is dubbed
MVP, the multimedia video processor. A single MVP
replaces several system components by integrating multiple
processors, memory control logic, I-cache and internal
memory, an advanced DMA controller and video timing
generation logic (’C80 only) onto a single chip. They
provided an order of magnitude increase in computational
power over existing digital signal processors (DSPs) and
general-purpose processors in 1994.

Two types of processors are combined in the MVP
architecture: a single RISC master processor (MP) and
a number of VLIW DSP-like parallel processors (PPs)
(Figure 12). Moreover, the chip contains a programmable
DMA transfer controller (TC), a video controller (VC) and
a boundary-scan test access port (TAP). All processors are
interconnected by a crossbar with I-caches and data RAM
and parameter RAM areas.

The ’C8x family consists of two members, the ’C80 [124],
which features four PPs and the ’C82 [125] with only two
on-chip PPs.

The MP functions as a 32-bit RISC master control
processor, and is intended to handle interrupts and external
requests and control the operation of the system as a whole.
The MP has an ANSI/IEEE 754-1985 compliant floating-
point unit. Although the MP ISA is classified as a RISC,
it has the capability of issuing explicit parallel operations in
a VLIW fashion. Up to three such operations can be issued:
a multiply, an arithmetic/logical and a load/store operation.

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

https://www.researchgate.net/publication/3214882_Single-chip_H324_videoconferencing?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2954823_A_single-chip_multiprocessor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/242565150_Considerations_in_the_Design_of_Hydra_A_Multiprocessor-on-a-Chip_Microarchitecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==


MULTITHREADED PROCESSORS 341

FIGURE 12. TI’s multimedia video multiprocessor (PP, parallel
processor; MP, master processor; FPU, floating-point unit; VC,
video controller; TAP, boundary-scan test access port; TC, transfer
controller).

The PPs are designed to perform 64-bit multiply-
intensive, multiple pixel and bit-field manipulation opera-
tions on data in registers and internal RAM. The PPs are
a collection of 32-bit fixed-point subprocessors connected
by data path multiplexers. This allows a wide variety of
operations to issue simultaneously. A local and global
address unit, a three-input ALU and a multiplier unit are
included along with a barrel rotator (an execution unit
that is similar to a barrel shifter but performs rotation, as
opposed to shifting, by an arbitrary number of bits in one
instruction cycle), bit-detection hardware, mask generator
and a bitfield expander. In this way, an algorithm can be
mapped onto the PP in far fewer instructions than with
traditional DSP and superscalar RISC processors. The
multiplier supports signed/signed or unsigned/unsigned (but
not signed/unsigned) multiplies when 16-bit input operands
are used and signed/unsigned or unsigned/unsigned (but
not signed/signed) multiplies when 8-bit input operands are
used. The ALU is capable of executing all 256 possible
logical operations on three variables. This allows operations
that may take several instructions on most DSPs to be
performed in a single ALU operation.

The TC is designed to handle all off-chip data transfer
operations required by the MP and PPs. The TC is
programmed by a 64-byte data structure called a packet
transfer request (PTREQ), describing the organization of the
transfer desired, and by internal processor interrupts. The
TC completely controls the bandwidth utilization of the chip.
Hardware for prioritizing requests such as cache-service
interrupts, individual PTREQ and direct external access
requests (DEA) is built into the TC. Each PTREQ can be
linked to another PTREQ structure, providing an unbroken
transition from one transfer to another, while giving the TC
the opportunity to service other transfer types. The MP and
each PP may make independent PTREQs; the TC services
them according to an internal priority scheme. The TC thus

provides the DSP programmer with the necessary tool to
interleave data transfer and computation.

The same MVP’s memory space is used for program and
data accesses, and is shared by all of the processors on
the chip. The MVP crossbar allows each PP to perform
two independent parallel data accesses to the on-chip shared
RAMs and one instruction fetch every cycle. Each PP has
three crossbar ports. The global port connects to any of the
shared RAMs. If an access is attempted over this port to an
address not in the shared RAMs, a DEA request is sent to the
TC. The local port connects to any of its local RAMs. When
a PP attempts a memory access over this port to an address
not in local RAMs, the access is diverted to the global port
and tried on the following cycle. Finally, the instruction port
accesses instructions from the PP’s I-cache.

The MVP is not a general-purpose microprocessor.
Rather it is designed and used as an extremely fast
digital signal processor. Due to its complex architectural
structure—a CMP structure with two different kinds of
processors, one of which even features a VLIW ISA—it
is difficult to develop a compiler that generates efficient
code. Therefore, most programs have to be hand-coded in
assembly language, which is not at all easy.

4.1.2. Hydra chip multiprocessor
While the TI MVP is an existing commercial microproces-
sor, the Hydra chip multiprocessor is simulated in software
to evaluate the CMP alternatives for future 109-transistor
chips. The Hydra proposal [122] is composed of four
two-issue superscalar CPUs on a single chip. Each of the
CPUs is similar to a MIPS R10000 processor with reduced
functionality and is attached to its own on-chip primary
I- and D-caches. In addition, a single, unified secondary
cache is included on the chip (Figure 13).

The Hydra memory system uses a four-level arrangement,
that is, a primary, secondary, tertiary SRAM cache and a
DRAM main memory. It is a shared-secondary cache CMP.

The individual primary I- and D-caches are designed to
supply each CPU in a single cycle in order to support the
very high memory bandwidth needed to sustain processor
performance. Each primary cache has 16 kbyte capacity
and is organized in 32-byte lines. The connection to its
CPU is provided by a 64-bit bus. In order to maintain
cache coherence, each D-cache must snoop the write
bus and invalidate any lines to which other CPUs write.
Measurements have shown that, in this way, in typical
applications more than 90% of loads hit in primary caches
and thus save the progress further down the memory
hierarchy. The large 512 kbyte secondary cache acts as
a large on-chip cache to back up the primary caches with
a nearby memory which is five or more cycles slower
than primary. The secondary cache is a kind of write
buffer between the CPUs and the outside world. On the
other hand, the secondary also acts as a communication
medium through which the four CPUs can communicate
using shared-memory mechanisms. The 8 Mbyte off-chip
tertiary cache has an access time of 10 cycles to the first

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

https://www.researchgate.net/publication/242565150_Considerations_in_the_Design_of_Hydra_A_Multiprocessor-on-a-Chip_Microarchitecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==


342 T. UNGERER, B. ROBIČ AND J. ŠILC

CPU 0

Centralized Bus Arbitration Mechanisms

Cache SRAM Array DRAM Main Memory I/O Device

Primary
I-cache

Primary
D-cache

CPU 0 Memory Controller

Rambus Memory
Interface

Off-chip L3
Interface

I/O Bus
Interface

DMA

CPU 1

Primary
I-cache

Primary
D-cache

CPU 1 Memory Controller

CPU 2

Primary
I-cache

Primary
D-cache

CPU2 Memory Controller

CPU 3

Primary
I-cache

Primary
D-cache

CPU 3 Memory Controller

On-chip Secondary
Cache

FIGURE 13. A schematic overview of Hydra.

word and is accessed through a 128-bit port that operates at
half the processor speed. Even with a large tertiary cache,
applications exist with large enough working sets to miss in
all of the caches frequently. For this reason, up to 128 Mbyte
of DRAM with at least 50 cycles access time can be attached
to the Hydra chip via a Rambus memory interface.

The read bus and write bus are the principal paths
of communication across the Hydra chip. The read and
the write bus are 256-bit and 64-bit wide, respectively.
Hammond and Olukotun [122] found that the contention for
both the read bus and the write bus slows performance by
only a few percent over a perfect crossbar, even in the worst
cases. Furthermore, with the write bus-based architecture,
no sophisticated coherence protocols are necessary to keep
the on-chip caches coherent.

The 1998 Hydra CMP [122] addresses an expensive, high-
end design, with many high-speed SRAM and DRAM chips,
directly attached to the Hydra chip. Alternative designs are
possible, however, in systems with different constraints. One
interesting alternative is a design with no off-chip tertiary at
all. In this way the system cost can be reduced dramatically
since expensive SRAM chips are eliminated and the number
of I/Os on the Hydra chip is halved. Another alternative is
that the secondary cache is replaced with on-chip DRAM,
thus making the tertiary cache superfluous. The performance
of a Hydra CMP with 256 Mbyte DRAM is evaluated in
[126]. On floating-point applications with large working
sets, the on-chip DRAM Hydra performed on average 52%
faster than the secondary-on-chip/tertiary-off-chip Hydra.

Assuming a shared (primary or secondary) cache, the
interthread data exchange can be handled efficiently.
Consequently, speculative loop iteration threads and data
speculation support are proposed for the Hydra single chip
multiprocessor [127].

4.1.3. IBM POWER4
The IBM POWER4 chip [123] is a symmetric CMP with
two 64-bit processors running at 1.3 GHz with 64 kbyte L1
I-cache and 32 kbyte L1 D-cache. Each processor can fetch
up to 8 IPC and has a sustained completion rate of up to
5 IPC. The POWER4 chip has 174 million transistors [128].

To
POWER4
Chip

From
POWER4
Chip

I/O

Execute

ExecuteFabric Controller

CIU

Execute

NCU 1
Execute

NCU 2
ExecuteL2

Cache

ExecuteProcessor
1

ExecuteProcessor
2

Execute ExecuteExecuteGX
Controller

L3
Directory

L3
Controller

FIGURE 14. The POWER4 chip (NCU, non-cacheable unit; CIU,
core interface unit).

Four POWER4 chips are packed in a single multi-chip
module (MCM) as an eight-processor SMP. Four MCMs can
be interconnected to form a 32-processor SMP.

The components of the POWER4 chip are shown in
Figure 14. The two processors share a unified 1.41
Mbyte L2 cache through a core interface unit (CIU).
The CIU is a crossbar switch between the L2 cache and
the two processors. Each processor has associated with
it a non-cacheable unit (NCU) responsible for handling
instruction-serializing functions and performing any no-
cacheable operations in the storage hierarchy. Although
the L3 cache is on a separate chip, its L3 directory and
the L3 controller are located on the POWER4 chip. The
fabric controller provides master control of the internal
buses, performs snooping and coherency duties and directs
unidirectional external buses to/from the other POWER4
chips residing on the same or neighboring MCMs. The
GX controller is responsible for controlling the flow of
information in and out of the system.

The POWER4 was announced at Microprocessor Forum
1999 and is to be shipped in 2002.

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

https://www.researchgate.net/publication/2487263_A_Single_Chip_Multiprocessor_Integrated_with_DRAM?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/220938731_Data_Speculation_Support_for_a_Chip_Multiprocessor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/242565150_Considerations_in_the_Design_of_Hydra_A_Multiprocessor-on-a-Chip_Microarchitecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/242565150_Considerations_in_the_Design_of_Hydra_A_Multiprocessor-on-a-Chip_Microarchitecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==


MULTITHREADED PROCESSORS 343

TABLE 1. IPC results of the Tullsen et al. [73] and the Sigmund
and Ungerer [81] simulations.

Number × Sigmund and
(threads, issue) Tullsen et al. Ungerer

1 × (8, 8) 6.64 4.19
8 × (1, 1) 5.13 6.07
2 × (4, 4) 6.80 6.80
1 × (4, 8) 4.15 3.37
4 × (1, 2) 3.44 4.32
2 × (1, 4) 1.94 2.56

5. SIMULTANEOUS MULTITHREADING
VERSUS CHIP MULTIPROCESSOR

5.1. Simulations

In this section, we compare the two main architectural prin-
ciples capable of exploiting multiple threads of instructions,
i.e. thread-level (or coarse-grained) parallelism, namely the
CMP and the SMT approaches.

Sigmund and Ungerer [81] simulated various configu-
rations of the SMT model in combination with the CMP
approach and compared them to Tullsen et al.’s [73]
simulations (see Table 1). The simulations produced slightly
different results to Tullsen et al.’s simulations, especially
viewing the eight-threaded, eight-issue superscalar approach
1× (8, 8) (in Table 1 p × (t, i) means p processors per chip,
each processor equipped with t threads and i issue slots).

The reason for the difference in results follows from
the high number of execution units in Tullsen et al.’s
approach; for example, up to eight load/store units are used
in Tullsen et al.’s simulation, ignoring hardware cost and
design problems, whereas the performance of Sigmund and
Ungerer’s SMT model is restricted by the assumption of a
single load/store unit. In Tullsen et al.’s simulations the
SMT approach performs better than the CMP approach,
whereas in Sigmund and Ungerer’s simulations the CMP
reaches a higher throughput than the SMT approach, when
using the same issue bandwidth and number of threads
(comparing the SMT of 1 × (8, 8) with the CMP of 8 ×
(1, 1)). However, if chip costs are taken into consideration,
a four-threaded, four-issue superscalar processor shows the
best performance/cost relation [81].

Further simulations by Eggers et al. [36] compared
SMT, wide-issue superscalar, interleaved multithreading
superscalar and two-CPU and four-CPU CMPs. Comparison
of the simulated processor architecture configurations is
given in Table 2.

The simulation results which are given in Table 3
were obtained on a workload which consisted of a group
of coarse-grained (parallel threads) and medium-grained
(parallel loop iterations) parallel programs.

The average instruction throughput of an eight-issue
superscalar was an IPC of 3.3, which is already high
compared to other measured superscalar IPCs, but rather
low compared to the eight instructions possibly issued per
cycle. The superscalar’s inability to exploit more ILP

or any thread-level parallelism contributed to its lower
performance. By exploiting thread-level parallelism, an
interleaved multithreading superscalar technique provided
an average instruction throughput of 4.2 IPC. This IPC
occurred with only four threads while performance fell with
additional threads. One of the reasons for this is that an
interleaved multithreading superscalar can issue instructions
from only one thread each cycle and therefore cannot hide
conflicts from interthread competition for shared resources.
SMT obtained better speedups than CMP2 and CMP4, the
latter being CMPs with respectively two four-issue and four
two-issue CPUs. Speedups on the CMPs were hindered
by the fixed partitioning of their hardware resources across
the CPUs. Bridging of latencies is only possible in
the multithreaded processor approaches and not in CMPs.
CPUs in CMPs were idle when thread-level parallelism was
insufficient. Exploiting large amounts of ILP in the unrolled
loops of individual threads was not possible due to the CPU’s
smaller issue bandwidth in CMPs. On the other hand, an
SMT processor dynamically partitions its resources among
threads, and therefore can respond well to variations in both
types of parallelism, exploiting them interchangeably.

In contrast to Eggers et al. [36] who compared archi-
tectures having constant total issue bandwidth (i.e. number
of CPUs × CPU issue bandwidth), Hammond et al. [129]
established a standard chip area and integration density,
and determined the parameters for three architectures:
superscalar, CMP and SMT (Table 4). They argue that
design complexity for a 16-issue CMP is similar to that of
a 12-issue superscalar or a 12-issue SMT processor.

In this case, a CMP with eight two-issue CPUs
outperforms a 12-issue superscalar and a 12-issue, eight-
threaded SMT processor on four SPEC95 benchmark
programs. Figure 15 shows the performance of the
superscalar, SMT and CMP on the four benchmarks relative
to a single two-issue superscalar.

The CMP achieved higher performance than the SMT due
to a total of 16 issue slots instead of 12 issue slots for the
SMT.

5.2. Discussion

The performance race between SMT and CMP has yet to
be decided. Certainly, CMP will be easier to implement,
but only SMT has the ability to hide latencies. A functional
partitioning as required by the on-chip wire-delay of future
microprocessors is not easily achieved with a SMT processor
due to the centralized instruction issue. A separation of the
thread queues as in the Karlsruhe multithreaded superscalar
processor is a possible solution, although it does not remove
the central instruction issue.

A combination of SMT and CMP is proposed in [81] and
in [130]. Perhaps the simulations of Sigmund and Ungerer
show the desirability of a CMP consisting of moderately
equipped (e.g. four-threaded, four-issue superscalar) SMTs.

Future CMPs will most likely be SMPs and usually
feature separate primary I- and D-caches per on-chip CPU
and an optional unified secondary cache. If the CPUs always
execute threads of the same process, the secondary cache

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

https://www.researchgate.net/publication/3744150_A_clustered_approach_to_multithreaded_processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3661213_Simultaneous_multithreading_Maximizing_on-chip_parallelism?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==


344 T. UNGERER, B. ROBIČ AND J. ŠILC

TABLE 2. Processor architectures simulated by Eggers et al. [36].

Interleaved multithreading
Features Superscalar superscalar SMT CMP2 CMP4

No. of CPUs 1 1 1 2 4
CPU issue bandwidth 8 8 8 4 2
No. of threads 1 8 8 1 per CPU 1 per CPU
No. of architectures registers 32 32 per thread 32 per thread 32 per CPU 32 per CPU

TABLE 3. IPC when executing a parallel workload.

Interleaved multithreading
Threads Superscalar superscalar SMT CMP2 CMP4

1 3.3 3.3 3.3 2.4 1.5
2 NA 4.1 4.7 4.3 2.6
4 NA 4.2 5.6 NA 4.2
8 NA 3.5 6.1 NA NA

TABLE 4. Processor architectures simulated by Hammond et al. [129].

Features Superscalar CMP SMT

No. of CPUs 1 8 1
CPU issue bandwidth 12 2 per CPU 12
No. of threads 1 1 per CPU 8
No. of architectural registers 32 32 per CPU 32 per thread

FIGURE 15. Relative performance of superscalar, SMT and CMP.

organization will be simplified, because different processes
do not have to be distinguished.

Similarly, if all (hardware-supported) threads of a SMT
processor always execute threads of the same process,
preferably in SPMD fashion, a unified (primary) I-cache
may prove useful, since the code can be shared between the
threads. The primary D-cache may be unified or separated
between the threads depending on the access mechanism
used.

If CMP or SMT are the design choice of the future, the
impact on multiprocessor development will favor shared-
memory multiprocessors (either SMPs or DSMs) over
message-passing machines. In the future, we will observe
merging of SMT and CMP with today’s multiple-issue
processor techniques.

Sohi [131] expects that the distinction between the SMT
and CMP microarchitectures is likely to be blurred over
time, as we have already seen for the implicit multithreading
approaches above. Increasing wire delays will require
decentralization of critical processor functionality favouring
CMP, while flexible resource allocation policies will
enhance resource sharing as in SMT. In either case,
multithreaded processors will logically appear to be
collections of processing elements with additional support
for speculative execution. Thus, in addition to executing
parallel threads, the logical processors could execute single
programs that are divided into speculative threads [131].

6. CONCLUSIONS

Depending on the specific multithreaded processor design,
only a single-issue instruction pipeline (as in scalar RISC
processors) is used or a single issue unit issues instructions
from different instruction streams simultaneously. The latter
are called simultaneous multithreaded processors and they
combine the multithreading technique with a wide-issue
superscalar processor.

We further distinguish between implicit multithreaded
processor techniques that concurrently execute several
threads from a sequential program and explicit multi-
threaded processors that are able to execute threads (light-
weighted processes) of several processes concurrently. Note
that explicit multithreaded processors aim at a low execution
time of a multithreaded workload, while superscalar and

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

https://www.researchgate.net/publication/221025421_Microprocessors_-_10_Years_Back_10_Years_Ahead?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/221025421_Microprocessors_-_10_Years_Back_10_Years_Ahead?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==


MULTITHREADED PROCESSORS 345

implicit multithreaded processors aim at a low execution
time of a single program.

We expect explicit multithreaded processor techniques,
in particular the simultaneous multithreading techniques, as
well as chip multiprocessor techniques to be used in the
next generation of microprocessors. Recently announced are
SMT and CMP processors by IBM (POWER4), Compaq
(Alpha 21464) and Sun (MAJC-5200). While POWER4
is a CMP processor and the abandoned Alpha 21464 was
a SMT processor, the MAJC processor has two CPUs on
the same chip with each CPU being a four-threaded blocked
interleaving VLIW processor [132].

Still hot research trends are the implicit multithreaded
processor techniques and the related helper thread approach.
Both target the performance increase of single-threaded
programs by dynamically utilizing speculative thread-level
parallelism.

Moreover, we expect that future research will also focus
on the deployment of multithreading techniques in the fields
of signal processors, microcontrollers, in particular for real-
time applications, and for power management.

This survey paper should clarify the terminology and
demonstrate the research results achieved for such new
architectural approaches.

REFERENCES

[1] Patt, Y. N. et al. (1997) One billion transistors, one
uniprocessor, one chip. Computer, 30, 51–57.

[2] Šilc, J., Ungerer, T. and Robič, B. (2000) A survey of
new research directions in microprocessors. Microproc.
Microsyst., 24, 175–190.

[3] Lam, M. S. and Wilson, R. P. (1992) Limits of control
flow on parallelism. In Proc. 18th ISCA, Toronto, Canada,
May 27–30, pp. 46–57. ACM Press, New York.

[4] Wall, D. W. (1991) Limits of instruction-level parallelism. In
Proc. Int. Conf. ASPLOS-IV, Santa Clara, CA, April 8–11,
pp. 176–188. ACM Press, New York.

[5] Butler, M. et al. (1991) Single instruction stream parallelism
is greater than two. In Proc. 18th ISCA, Toronto, Canada,
May 27–30, pp. 276–286. ACM Press, New York.

[6] Lipasti, M. H. and Shen, J. P. (1997) Superspeculative
microarchitecture for beyond AD 2000. Computer, 30, 59–
66.

[7] Chrysos, G. Z. and Emer, J. S. (1998) Memory dependence
prediction using store sets. In Proc. 25th ISCA, Barcelona,
Spain, June 30–July 4, pp. 142–153. ACM/IEEE Computer
Society Press, Los Alamitos, CA.

[8] Lipasti, M. H. and Shen, J. P. (1997) The performance
potential of value and dependence prediction. Lecture Notes
Comput. Sci., 1300, 1043–1052.

[9] Lipasti, M. H., Wilkerson, C. B. and Shen, J. P. (1996)
Value locality and load value prediction. In Proc. Int. Conf.
ASPLOS-VII, Cambridge, MA, October 1–5, pp. 138–147.
ACM Press, New York.

[10] Rychlik, B. et al. (1998) Efficiency and performance impact
of value prediction. In Proc. Conf. PACT, Paris, France,
October 13–17, pp. 148–154. IEEE Computer Society Press,
Los Alamitos, CA.

[11] Iannucci, R. A., Gao, G. R., Halstead, R. and Smith, B.
(1994) Multithreaded Computer Architecture: A Summary

of the State of the Art. Kluwer Academic Publishers,
Dordrecht.

[12] Šilc, J., Robič, B. and Ungerer, T. (1999) Processor
Architecture: From Dataflow to Superscalar and Beyond.
Springer, Berlin.

[13] Smith, B. J. (1981) Architecture and applications of the HEP
multiprocessor computer system. SPIE Real-Time Signal
Processing IV, 298, 241–248.

[14] Lee, D. C. et al. (1998) Execution characteristics of
desktop applications on Windows NT. In Proc. 25th ISCA,
Barcelona, Spain, June 30–July 4, pp. 27–38. ACM/IEEE
Computer Society Press, Los Alamitos, CA.

[15] Sohi, G. S. and Roth, A. (2001) Speculative multithreaded
processor. Computer, 34, 66–73.

[16] Franklin, M. (1993) The Multiscalar Architecture. Com-
puter Science Technical Report No. 1196, University of
Wisconsin-Madison, WI.

[17] Sohi, G. S. (1997) Multiscalar: another fourth-generation
processor. Computer, 30, 72.

[18] Sohi, G. S., Breach, S. E. and Vijaykumar, T. N.
(1995) Multiscalar processors. In Proc. 22nd ISCA, Santa
Margherita Ligure, Italy, June 22–24, pp. 414–425. ACM
Press, New York.

[19] Vijaykumar, T. N. and Sohi, G. S. (1998) Task selection for
a multiscalar processor. In Proc. 31st Int. Symp. MICRO,
Dallas, TX, November 30–December 2, pp. 81–92. IEEE
Computer Society, Los Alamitos, CA.

[20] Rotenberg, E. et al. (1997) Trace processors. In Proc.
30th Int. Symp. MICRO, Research Triangle Park, NC,
December 1–3, pp. 138–148. IEEE Computer Society, Los
Alamitos, CA.

[21] Smith, J. E. and Vajapeyam, S. (1997) Trace processors:
moving to fourth-generation microarchitectures. Computer,
30, 68–74.

[22] Vajapeyam, S. and Mitra, T. (1997) Improving superscalar
instruction dispatch and issue by exploiting dynamic code
sequences. In Proc. 24th ISCA, Denver, CO, June 2–4, pp. 1–
12. ACM/IEEE Computer Society Press, Los Alamitos, CA.

[23] Dubey, P. K. et al. (1995) Single-program Speculative
Multithreading (SPSM) Architecture: Compiler-assisted
Fine-grain Multithreading. IBM Research Report RC 19928
(02/06/95), Yorktown Heights, New York.

[24] Li, Z. et al. (1996) Compiler techniques for concurrent
multithreading with hardware speculation support. Lecture
Notes Comput. Sci., 1239, 175–191.

[25] Tsai, J.-Y. and Yew, P.-C. (1996) The superthreaded archi-
tecture: thread pipelining with run-time data dependence
checking and control speculation. In Proc. Conf. PACT,
Boston, MA, October, pp. 35–46. IEEE Computer Society
Press, Los Alamitos, CA.

[26] Akkary, H. and Driscoll, M.A. (1998) A dynamic
multithreading processor. In Proc. 31st Int. Symp. MICRO,
Dallas, TX, November 30–December 2, pp. 226–236. IEEE
Computer Society, Los Alamitos, CA.

[27] Marcuello, P., Gonzales, A. and Tubella, J. (1998)
Speculative multithreaded processors. In Proc. Int. Conf.
Supercomp., Melbourne, Australia, July 13–17, pp. 77–84.
ACM Press, New York.

[28] Klauser, A. et al. (1998) Dynamic hammock predication
for non-predicated instruction sets. In Proc. Conf. PACT,
Paris, France, October 13–17, pp. 278–285. IEEE Computer
Society Press, Los Alamitos, CA.

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

https://www.researchgate.net/publication/220952580_MAJC-5200_A_High_Performance_Microprocessor_for_Multimedia_Computing?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/220475742_Speculative_Multithreaded_Processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/220475742_Speculative_Multithreaded_Processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2620954_Limits_Of_Instruction-Level_Parallelism?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2620954_Limits_Of_Instruction-Level_Parallelism?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2620954_Limits_Of_Instruction-Level_Parallelism?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2954795_Superspeculative_microarchitecture_for_beyond_AD_2000?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2954795_Superspeculative_microarchitecture_for_beyond_AD_2000?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2954795_Superspeculative_microarchitecture_for_beyond_AD_2000?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/220938681_Value_Locality_and_Load_Value_Prediction?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/220938681_Value_Locality_and_Load_Value_Prediction?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/220938681_Value_Locality_and_Load_Value_Prediction?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/220938681_Value_Locality_and_Load_Value_Prediction?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2954812_Trace_processors_Moving_to_fourth-generation_microarchitectures?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2954812_Trace_processors_Moving_to_fourth-generation_microarchitectures?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2954812_Trace_processors_Moving_to_fourth-generation_microarchitectures?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/238686227_Architecture_And_Applications_Of_The_HEP_Multiprocessor_Computer_System?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/238686227_Architecture_And_Applications_Of_The_HEP_Multiprocessor_Computer_System?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/238686227_Architecture_And_Applications_Of_The_HEP_Multiprocessor_Computer_System?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/246906623_Multiscalar_Another_fourth-generation_processor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/246906623_Multiscalar_Another_fourth-generation_processor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/200775321_The_Multiscalar_Architecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/200775321_The_Multiscalar_Architecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/200775321_The_Multiscalar_Architecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3791092_Limits_of_Control_Flow_on_Parallelism?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3791092_Limits_of_Control_Flow_on_Parallelism?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3791092_Limits_of_Control_Flow_on_Parallelism?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3758416_Memory_dependence_prediction_using_store_sets?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3758416_Memory_dependence_prediction_using_store_sets?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3758416_Memory_dependence_prediction_using_store_sets?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3758416_Memory_dependence_prediction_using_store_sets?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/264923317_Multithreaded_computer_architecture_A_summary_of_the_state_of_the_art?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/264923317_Multithreaded_computer_architecture_A_summary_of_the_state_of_the_art?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/264923317_Multithreaded_computer_architecture_A_summary_of_the_state_of_the_art?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/264923317_Multithreaded_computer_architecture_A_summary_of_the_state_of_the_art?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/264923317_Multithreaded_computer_architecture_A_summary_of_the_state_of_the_art?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/264923317_Multithreaded_computer_architecture_A_summary_of_the_state_of_the_art?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/264923317_Multithreaded_computer_architecture_A_summary_of_the_state_of_the_art?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/264923317_Multithreaded_computer_architecture_A_summary_of_the_state_of_the_art?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3668653_The_superthreaded_architecture_thread_pipelining_with_run-time_data_dependence_checking_and_control_speculation?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3668653_The_superthreaded_architecture_thread_pipelining_with_run-time_data_dependence_checking_and_control_speculation?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3668653_The_superthreaded_architecture_thread_pipelining_with_run-time_data_dependence_checking_and_control_speculation?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3668653_The_superthreaded_architecture_thread_pipelining_with_run-time_data_dependence_checking_and_control_speculation?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3668653_The_superthreaded_architecture_thread_pipelining_with_run-time_data_dependence_checking_and_control_speculation?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/221235982_Speculative_Multithreaded_Processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/221235982_Speculative_Multithreaded_Processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/221235982_Speculative_Multithreaded_Processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/221235982_Speculative_Multithreaded_Processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3661214_Multiscalar_processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3661214_Multiscalar_processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3661214_Multiscalar_processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3661214_Multiscalar_processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3784404_A_dynamic_multithreading_processor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3784404_A_dynamic_multithreading_processor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3784404_A_dynamic_multithreading_processor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3784404_A_dynamic_multithreading_processor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3700199_Improving_Superscalar_Instruction_Dispatch_And_Issue_By_Exploiting_Dynamic_Code_Sequences?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3700199_Improving_Superscalar_Instruction_Dispatch_And_Issue_By_Exploiting_Dynamic_Code_Sequences?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3700199_Improving_Superscalar_Instruction_Dispatch_And_Issue_By_Exploiting_Dynamic_Code_Sequences?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3700199_Improving_Superscalar_Instruction_Dispatch_And_Issue_By_Exploiting_Dynamic_Code_Sequences?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3784414_Task_selection_for_a_multiscalar_processor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3784414_Task_selection_for_a_multiscalar_processor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3784414_Task_selection_for_a_multiscalar_processor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3784414_Task_selection_for_a_multiscalar_processor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==


346 T. UNGERER, B. ROBIČ AND J. ŠILC

[29] Klauser, A., Paithankar, A. and Grunwald, D. (1998)
Selective eager execution on the PolyPath architecture. In
Proc. 25th ISCA, Barcelona, Spain, June 30–July 4, pp. 250–
259. ACM/IEEE Computer Society Press, Los Alamitos,
CA.

[30] Chappell, R. S. et al. (1999) Simultaneous subordinate
microthreading (SSMT). In Proc. 26th ISCA, Atlanta, GA,
May 2–4, pp. 186–195. ACM/IEEE Computer Society Press,
Los Alamitos, CA.

[31] Culler, D. E., Singh, J. P. and Gupta, A. (1999) Parallel
Computer Architecture: A Hardware/Software Approach.
Morgan Kaufmann Publishers, San Francisco.

[32] Barroso, L. A., Gharachorloo, K. and Bugnion, E. (1998)
Memory system characterization of commercial workloads.
In Proc. 25th ISCA, Barcelona, Spain, June 30–July 4, pp. 3–
14. ACM/IEEE Computer Society Press, Los Alamitos, CA.

[33] Alverson, R. et al. (1990) The Tera computer system.
In Proc. Int. Conf. Supercomputing, Amsterdam, The
Netherlands, June, pp. 1–6.

[34] Dennis, J. B. and Gao, G. R. (1994) Multithreaded
architectures: principles, projects, and issues. In Iannucci,
R. A. et al. (eds), Multithreaded Computer Architecture:
A Summary of the State of the Art. Kluwer Academic
Publishers, Dordrecht.

[35] Šilc, J., Robič, B. and Ungerer, T. (1998) Asynchrony in
parallel computing: from dataflow to multithreading. Parall.
Distr. Comput. Practices, 1, 57–83.

[36] Eggers, S. J. et al. (1997) Simultaneous multithreading: a
platform for next-generation processors. IEEE Micro, 17,
12–19.

[37] Laudon, J., Gupta, A. and Horowitz, M. (1994) Interleaving:
a multithreading technique targeting multiprocessors and
workstations. In Proc. Int. Conf. ASPLOS-VI, San Jose, CA,
October 4–7, pp. 308–318. ACM Press, New York.

[38] Smith, B. J. (1985) The architecture of HEP. In Kowalik,
J. S. (ed.), Parallel MIMD Computation: HEP Supercom-
puter and Its Applications. MIT Press, Cambridge, MA.

[39] Thistle, M. and Smith, B. J. (1988) A processor architecture
for Horizon. In Proc. Supercomputing Conf., Orlando, FL,
November, pp. 35–41. IEEE Computer Society Press, Los
Alamitos, CA.

[40] Halstead, R. H. and Fujita, T. (1988) MASA: a multi-
threaded processor architecture for parallel symbolic com-
puting. In Proc. 15th ISCA, Honolulu, HW, May–June,
pp. 443–451. IEEE Computer Society Press, Los Alamitos,
CA.

[41] Formella, A., Keller, J. and Walle, T. (1996) HPP: a high
performance PRAM. Lecture Notes Comput. Sci., 1123,
425–434.

[42] Hansen, C. (1996) MicroUnity’s MediaProcessor architec-
ture. IEEE Micro, 16, 34–41.

[43] Alverson, G. et al. (1995) Scheduling on the Tera MTA.
Lecture Notes Comput. Sci., 949, 19–44.

[44] Fillo, M. et al. (1995) The M-machine multicomputer.
In Proc. 28th Int. Symp. MICRO, Ann Arbor, MI,
November 29–December 1, pp. 146–156. IEEE Computer
Society, Los Alamitos, CA.

[45] Bach, P. et al. (1997) Building the 4 processor SB-PRAM
prototype. In Proc. 30th Hawaii Int. Symp. Sys. Sci., January,
pp. 5:14–23. IEEE Computer Society Press, Los Alamitos,
CA.

[46] Sterling, T. (1997) Beyond 100 teraflops through supercon-
ductors, holographic storage, and the data vortex. In Proc.
Int. Symp. on Supercomputing, Tokyo, Japan.

[47] Dorojevets, M. (2000) COOL multithreading in HTMT
SPELL-1 processors. Int. J. High Speed Electron. Sys., 10,
247–253.

[48] Kreuzinger, J. and Ungerer, T. (1999) Context-switching
techniques for decoupled multithreaded processors. In
Proc. 25th Euromicro Conf., Milano, Italy, September 4–
7, pp. 1:248–251. IEEE Computer Society Press, Los
Alamitos, CA.

[49] Boothe, R. F. (1993) Evaluation of Multithreading and
Caching in Large Shared Memory Parallel Computers.
Technical Report UCB/CSD-93-766, Computer Science
Division, University of California, Berkeley, CA.

[50] Boothe, R. F. and Ranade, A. (1992) Improved multithread-
ing techniques for hiding communication latency in multi-
processors. In Proc. 19th ISCA, Gold Coast, Australia, May,
pp. 214–223. ACM Press, New York.

[51] Agarwal, A., Kubiatowicz, J., Kranz, D. et al. (1993)
Sparcle: an evolutionary processor design for large-scale
multiprocessors. IEEE Micro, 13 (June), 48–61.

[52] Mikschl, A. and Damm, W. (1996) Msparc: a multithreaded
Sparc. Lecture Notes Comput. Sci., 1123, 461–469.

[53] Mankovic, T. E., Popescu, V. and Sullivan, H. (1987) CHoPP
principles of operations. In Proc. 2nd Int. Supercomputer
Conf., May, pp. 2–10.

[54] Grünewald, W. and Ungerer, T. (1996) Towards extremely
fast context switching in a block multithreaded processor.
In Proc. 22nd Euromicro Conf., Prague, Czech Republic,
September 2–5, pp. 592–599. IEEE Computer Society Press,
Los Alamitos, CA.

[55] Grünewald, W. and Ungerer, T. (1997) A multithreaded
processor designed for distributed shared memory systems.
In Proc. Int. Conf. Advances in Parall. Distrib. Comput.,
Shanghai, China, March, pp. 206–213.

[56] Dally, W. J. et al. (1992) The message-driven processor: a
multicomputer processing node with efficient mechanisms.
IEEE Micro, 12, 23–39.

[57] Agarwal, A. et al. (1995) The MIT Alewife machine:
architecture and performance. In Proc. 22nd ISCA, Santa
Margherita Ligure, Italy, June 22–24, pp. 2–13. ACM Press,
New York.

[58] Kavi, K. M., Levine, D. L. and Hurson, A. R. (1997) A non-
blocking multithreaded architecture. In Proc. 5th Int. Conf.
Advanced Comput., Madras, India, December, pp. 171–177.

[59] Gwennap, L. (1997) DanSoft develops VLIW design.
Microproc. Report, 11, 18–22.

[60] Bolychevsky, A., Jesshope, C. R. and Muchnik, V. B.
(1996) Dynamic scheduling in RISC architectures. IEE
Proc. Comput. Dig. Tech., 143, 309–317.

[61] Jesshope, C. R. and Luo, B. (2000) Micro-threading: a
new approach to future RISC. In Proc. ACAC, Canberra,
Australia, January 31–February 3, pp. 34–41.

[62] Jesshope, C. R. (2001) Implementing an efficient vector
instruction set in a chip multi-processor using micro-
threaded pipelines. Australia Comp. Sci. Commun., 23, 80–
88.

[63] Tremblay, M. (1999) A VLIW convergent multiprocessor
system on a chip. In Proc. Microprocessor Forum, San Jose,
CA.

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

https://www.researchgate.net/publication/2312501_Sparcle_An_Evolutionary_Processor_Design_for_Large-Scale_Multiprocessors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2312501_Sparcle_An_Evolutionary_Processor_Design_for_Large-Scale_Multiprocessors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2312501_Sparcle_An_Evolutionary_Processor_Design_for_Large-Scale_Multiprocessors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/245514962_COOL_Multithreading_in_HTMT_SPELL1_Processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/245514962_COOL_Multithreading_in_HTMT_SPELL1_Processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/245514962_COOL_Multithreading_in_HTMT_SPELL1_Processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3837398_Micro-threading_a_new_approach_to_future_RISC?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3837398_Micro-threading_a_new_approach_to_future_RISC?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3837398_Micro-threading_a_new_approach_to_future_RISC?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3683571_A_Multithreaded_Processor_Designed_for_Distributed_Shared_Memory_Systems?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3683571_A_Multithreaded_Processor_Designed_for_Distributed_Shared_Memory_Systems?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3888201_Implementing_an_efficient_vector_instruction_set_in_a_chipmulti-processor_using_micro-threaded_pipelines?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3888201_Implementing_an_efficient_vector_instruction_set_in_a_chipmulti-processor_using_micro-threaded_pipelines?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3888201_Implementing_an_efficient_vector_instruction_set_in_a_chipmulti-processor_using_micro-threaded_pipelines?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3888201_Implementing_an_efficient_vector_instruction_set_in_a_chipmulti-processor_using_micro-threaded_pipelines?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/36172528_Simultaneous_subordinate_microthreading?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/36172528_Simultaneous_subordinate_microthreading?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/36172528_Simultaneous_subordinate_microthreading?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/36172528_Simultaneous_subordinate_microthreading?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/220767129_HPP_A_high_performance_PRAM?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/220767129_HPP_A_high_performance_PRAM?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/220767129_HPP_A_high_performance_PRAM?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3758406_Selective_eager_execution_on_the_PolyPath_architecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3758406_Selective_eager_execution_on_the_PolyPath_architecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3758406_Selective_eager_execution_on_the_PolyPath_architecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3758406_Selective_eager_execution_on_the_PolyPath_architecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3758406_Selective_eager_execution_on_the_PolyPath_architecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3758406_Selective_eager_execution_on_the_PolyPath_architecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3758406_Selective_eager_execution_on_the_PolyPath_architecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/36452107_Towards_Extremely_Fast_Context_Switching_in_a_Block-Multithreaded_Processor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/36452107_Towards_Extremely_Fast_Context_Switching_in_a_Block-Multithreaded_Processor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3758395_Memory_System_Characterization_of_Commercial_Workloads?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3758395_Memory_System_Characterization_of_Commercial_Workloads?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3499091_A_processor_architecture_for_Horizon?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3499091_A_processor_architecture_for_Horizon?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3499091_A_processor_architecture_for_Horizon?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3499091_A_processor_architecture_for_Horizon?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/220771804_Retrospective_The_MIT_Alewife_Machine_Architecture_and_Performance?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/220771804_Retrospective_The_MIT_Alewife_Machine_Architecture_and_Performance?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/220771804_Retrospective_The_MIT_Alewife_Machine_Architecture_and_Performance?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/220771804_Retrospective_The_MIT_Alewife_Machine_Architecture_and_Performance?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2520739_Interleaving_A_Multithreading_Technique_Targeting_Multiprocessors_and_Workstations?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2520739_Interleaving_A_Multithreading_Technique_Targeting_Multiprocessors_and_Workstations?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2520739_Interleaving_A_Multithreading_Technique_Targeting_Multiprocessors_and_Workstations?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2520739_Interleaving_A_Multithreading_Technique_Targeting_Multiprocessors_and_Workstations?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/220769200_MSparc_A_Multithreaded_Sparc?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/220769200_MSparc_A_Multithreaded_Sparc?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/234777354_MASA_a_multithreaded_processor_architecture_for_parallel_symbolic_computing?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/234777354_MASA_a_multithreaded_processor_architecture_for_parallel_symbolic_computing?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/234777354_MASA_a_multithreaded_processor_architecture_for_parallel_symbolic_computing?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/234777354_MASA_a_multithreaded_processor_architecture_for_parallel_symbolic_computing?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/234777354_MASA_a_multithreaded_processor_architecture_for_parallel_symbolic_computing?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/242601899_The_architecture_of_hep?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/242601899_The_architecture_of_hep?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/242601899_The_architecture_of_hep?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3818718_Context-switching_techniques_for_decoupled_multithreaded_processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3818718_Context-switching_techniques_for_decoupled_multithreaded_processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3818718_Context-switching_techniques_for_decoupled_multithreaded_processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3818718_Context-switching_techniques_for_decoupled_multithreaded_processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3818718_Context-switching_techniques_for_decoupled_multithreaded_processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/239037936_Dansoft_develops_VLIW_design?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/239037936_Dansoft_develops_VLIW_design?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3351256_Dynamic_scheduling_in_RISC_architectures?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3351256_Dynamic_scheduling_in_RISC_architectures?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3351256_Dynamic_scheduling_in_RISC_architectures?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2530557_A_Non-Blocking_Multithreaded_Architecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2530557_A_Non-Blocking_Multithreaded_Architecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2530557_A_Non-Blocking_Multithreaded_Architecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3214885_MicroUnity's_MediaProcessor_architecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3214885_MicroUnity's_MediaProcessor_architecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/248829864_CHoPP_priciples_of_operations?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/248829864_CHoPP_priciples_of_operations?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/248829864_CHoPP_priciples_of_operations?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3791054_Improved_Multithreading_Techniques_for_Hiding_Communication_Latency_in_Multiprocessors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3791054_Improved_Multithreading_Techniques_for_Hiding_Communication_Latency_in_Multiprocessors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3791054_Improved_Multithreading_Techniques_for_Hiding_Communication_Latency_in_Multiprocessors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3791054_Improved_Multithreading_Techniques_for_Hiding_Communication_Latency_in_Multiprocessors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==


MULTITHREADED PROCESSORS 347

[64] Tremblay, M. et al. (2000) The MAJC architecture: a
synthesis of parallelism and scalability. IEEE Micro, 20, 12–
25.

[65] Borkenhagen, J. M. et al. (2000) A multithreaded PowerPC
processor for commercial servers. IBM J. Res. Develop., 44,
885–898.

[66] Dorozhevets, M. N. and Wolcott, P. (1992) The El’brus-
3 and MARS-M: recent advances in Russian high-
performance computing. J. Supercomp., 6, 5–48.

[67] Hirata, H. et al. (1992) An elementary processor architecture
with simultaneous instruction issuing from multiple threads.
In Proc. 19th ISCA, Gold Coast, Australia, May, pp. 136–
145. ACM Press, New York.

[68] Serrano, M. J., Yamamoto, W., Wood, R. and Ne-
mirovsky, M. D. (1994) Performance estimation in a multi-
streamed superscalar processor. Lecture Notes Comput. Sci.,
794, 213–230.

[69] Yamamoto, W. and Nemirovsky, M. D. (1995) Increasing
superscalar performance through multistreaming. In Proc.
Conf. PACT, Limassol, Cyprus, June 26–29, pp. 49–58.
IEEE Computer Society Press, Los Alamitos, CA.

[70] Gulati, M. and Bagherzadeh, N. (1996) Performance study
of a multithreaded superscalar microprocessor. In Proc. 2nd
Int. Symp. HPCA, San Jose, CA, February 3–7, pp. 291–301.
IEEE Computer Society Press, Los Alamitos, CA.

[71] Loikkanen, M. and Bagherzadeh, N. (1996) A fine-grain
multithreading superscalar architecture. In Proc. Conf.
PACT, Boston, MA, October, pp. 163–168. IEEE Computer
Society Press, Los Alamitos, CA.

[72] Pontius, M. and Bagherzadeh, N. (1999) Multithreaded
extensions enhance multimedia performance. In Proc. 3rd
Workshop MTEAC, Orlando, FL, January 9.

[73] Tullsen, D. M., Eggers, S. J. and Levy, H. M. (1995) Simul-
taneous multithreading: maximizing on-chip parallelism. In
Proc. 22nd ISCA, Santa Margherita Ligure, Italy, June 22–
24, pp. 392–403. ACM Press, New York.

[74] Tullsen, D. M. et al. (1996) Exploiting choice: instruction
fetch and issue on an implementable simultaneous multi-
threading processor. In Proc. 23rd ISCA, Philadelphia, PA,
May 22–24, pp. 191–202. ACM Press, New York.

[75] Lo, J. L. et al. (1997) Converting thread-level parallelism to
instruction-level parallelism via simultaneous multithread-
ing. ACM Trans. Comput. Sys., 15, 322–354.

[76] Tullsen, D. M. et al. (1999) Supporting fine-grained
synchronization on a simultaneous multithreading processor.
In Proc. 5th Int. Symp. HPCA, Orlando, FL, January 9–13,
pp. 54–58. IEEE Computer Society Press, Los Alamitos,
CA.

[77] Wallace, S., Calder, B. and Tullsen, D. M. (1998) Threaded
multiple path execution. In Proc. 25th ISCA, Barcelona,
Spain, June 27–July 1, pp. 238–249. ACM/IEEE Computer
Society Press, Los Alamitos, CA.

[78] Wallace, S., Tullsen, D. M. and Calder, B. (1999) Instruction
recycling on a multiple-path processor. In Proc. 5th Int.
Symp. HPCA, Orlando, FL, January 9–13, pp. 44–53. IEEE
Computer Society Press, Los Alamitos, CA.

[79] Lo, J. L. et al. (1998) An analysis of database workload
performance on simultaneous multithreaded processors. In
Proc. 25th ISCA, Barcelona, Spain, June 27–July 1, pp. 39–
50. ACM/IEEE Computer Society Press, Los Alamitos, CA.

[80] Seng, J. S., Tullsen, D. M. and Cai, G. Z. N. (2000) Power-
sensitive multithreaded architecture. In Proc. ICCD, Austin,
TX, September 17–20, pp. 199–206.

[81] Sigmund, U. and Ungerer, T. (1996) Evaluating a multi-
threaded superscalar microprocessor versus a multiproces-
sor chip. In Proc. 4th PASA Workshop in Parallel Systems
and Algorithms, Jülich, Germany, April, pp. 147–159.

[82] Sigmund, U. and Ungerer, T. (1996) Identifying bottlenecks
in multithreaded superscalar multiprocessors. Lecture Notes
Comput. Sci., 1123, 797–800.

[83] Oehring, H., Sigmund, U. and Ungerer, T. (1999) MPEG-
2 video decompression on simultaneous multithreaded
multimedia processors. In Proc. Conf. PACT, Newport
Beach, CA, October 12–16, pp. 11–16. IEEE Computer
Society Press, Los Alamitos, CA.

[84] Oehring, H., Sigmund, U. and Ungerer, T. (2000)
Performance of simultaneous multithreaded multimedia-
enhanced processors for MPEG-2 video decompression.
J. Syst. Arch., 46, 1033–1046.

[85] Sigmund, U., Steinhaus, M. and Ungerer, T. (2000)
Transistor count and chip space assessment of multimedia-
enhanced simultaneous multithreaded processors. In Proc.
4th Workshop MTEAC, Monterrey, CA, December 10.

[86] Steinhaus, M. et al. (2001) Transistor count and chip
space estimation of simple-scalar-based microprocessor
models. In Proc. Workshop on Complexity-Effective Design,
Göteborg, Sweden, June 30.

[87] Burns, J. and Gaudiot, J.-L. (2000) Quantifying the SMT
layout overhead—Does SMT pull its weight? In Proc. 6th
Int. Symp. HPCA, Toulouse, France, January 8–12, pp. 109–
120. IEEE Computer Society Press, Los Alamitos, CA.

[88] Espasa, R. and Valero, M. (1997) Exploiting instruction- and
data-level parallelism. IEEE Micro, 17, 20–27.

[89] Emer, J. (1999) Simultaneous multithreading: multiplying
Alpha’s performance. In Proc. Microprocessor Forum, San
Jose, CA.

[90] Allen, F. et al. (2001) Blue Gene: a vision for protein science
using a petaflops supercomputer. IBM Syst. J., 40, 310–326.

[91] Moshovos, A. I. (1998) Memory Dependence Prediction.
PhD Thesis, University of Wisconsin-Madison.

[92] Gopal, S. et al. (1998) Speculative versioning cache. In
Proc. 4th Int. Symp. HPCA, Las Vegas, NE, January 31–
February 4, pp. 195–205. IEEE Computer Society Press, Los
Alamitos, CA.

[93] Rotenberg, E. et al. (1996) Trace cache: a low latency
approach to high bandwidth instruction fetch. In Proc. 29th
Int. Symp. MICRO, Paris, France, December 2–4, pp. 24–34.
IEEE Computer Society, Los Alamitos, CA.

[94] Tubella, J. and Gonzalez, A. (1998) Control speculation in
multithreaded processors through dynamic loop detection.
In Proc. 4th Int. Symp. HPCA, Las Vegas, NE, January 31–
February 4, pp. 14–23. IEEE Computer Society Press, Los
Alamitos, CA.

[95] Codrescu, L. and Wills, D. S. (2000) On dynamic speculative
thread partitioning and the MEM-slicing algorithm. J. Uni-
versal Comp. Sci., 6, 908–927.

[96] Keckler, S. W., Chang, A., Lee, W. S. and Dally, W. J.
(1999) Concurrent event handling through multithreading.
IEEE Trans. Comput., 48, 903–916.

[97] Zilles, C. B., Emer, J. S. and Sohi, G. S. (1999) The use
of multithreading for exception handling. In Proc. 32nd Int.
Symp. MICRO, Haifa, Israel, November 16–18, pp. 219–
229. IEEE Computer Society Press, Los Alamitos, CA.

[98] Zilles, C. and Sohi, G. (2001) Execution-based prediction
using speculative slices. In Proc. 28th ISCA, Göteborg,

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

https://www.researchgate.net/publication/225092540_Blue_Gene_a_vision_for_protein_science_using_a_petaflop_supercomputer?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/225092540_Blue_Gene_a_vision_for_protein_science_using_a_petaflop_supercomputer?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/242437057_Simultaneous_multithreading_multiplying_alpha_performance?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/242437057_Simultaneous_multithreading_multiplying_alpha_performance?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/242437057_Simultaneous_multithreading_multiplying_alpha_performance?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3905734_Execution-based_prediction_using_speculative_slices?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3905734_Execution-based_prediction_using_speculative_slices?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2453128_On_Performance_Transistor_Count_and_Chip_Space_Assessment_of_Multimedia-enhanced_Simultaneous_Multithreaded_Processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2453128_On_Performance_Transistor_Count_and_Chip_Space_Assessment_of_Multimedia-enhanced_Simultaneous_Multithreaded_Processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2453128_On_Performance_Transistor_Count_and_Chip_Space_Assessment_of_Multimedia-enhanced_Simultaneous_Multithreaded_Processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2453128_On_Performance_Transistor_Count_and_Chip_Space_Assessment_of_Multimedia-enhanced_Simultaneous_Multithreaded_Processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3830425_The_use_of_multithreading_for_exception_handling?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3830425_The_use_of_multithreading_for_exception_handling?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3830425_The_use_of_multithreading_for_exception_handling?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3830425_The_use_of_multithreading_for_exception_handling?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3788161_Instruction_recycling_on_a_multiple-path_processor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3788161_Instruction_recycling_on_a_multiple-path_processor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/242453429_Multithreaded_extensions_enhance_multimedia_performance?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/242453429_Multithreaded_extensions_enhance_multimedia_performance?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/242453429_Multithreaded_extensions_enhance_multimedia_performance?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3758398_Threaded_multiple_path_execution?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3758398_Threaded_multiple_path_execution?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3758398_Threaded_multiple_path_execution?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3758398_Threaded_multiple_path_execution?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/223219911_Performance_of_simultaneous_multithreaded_multimedia-enhanced_processors_for_MPEG-2_video_decompression?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/223219911_Performance_of_simultaneous_multithreaded_multimedia-enhanced_processors_for_MPEG-2_video_decompression?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/223219911_Performance_of_simultaneous_multithreaded_multimedia-enhanced_processors_for_MPEG-2_video_decompression?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3826159_MPEG-2_video_decompression_on_simultaneous_multithreaded_multimedia_processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3826159_MPEG-2_video_decompression_on_simultaneous_multithreaded_multimedia_processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3826159_MPEG-2_video_decompression_on_simultaneous_multithreaded_multimedia_processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3826159_MPEG-2_video_decompression_on_simultaneous_multithreaded_multimedia_processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3826159_MPEG-2_video_decompression_on_simultaneous_multithreaded_multimedia_processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3668663_A_fine-grain_multithreading_superscalar_architecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3668663_A_fine-grain_multithreading_superscalar_architecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3668663_A_fine-grain_multithreading_superscalar_architecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3668663_A_fine-grain_multithreading_superscalar_architecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3629995_Performance_study_of_a_multithreaded_superscalar_microprocessor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3629995_Performance_study_of_a_multithreaded_superscalar_microprocessor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3629995_Performance_study_of_a_multithreaded_superscalar_microprocessor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3629995_Performance_study_of_a_multithreaded_superscalar_microprocessor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2806296_Power-Sensitive_Multithreaded_Architecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2806296_Power-Sensitive_Multithreaded_Architecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2806296_Power-Sensitive_Multithreaded_Architecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2738477_Evaluating_A_Multithreaded_Superscalar_Microprocessor_Versus_A_Multiprocessor_Chip?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2738477_Evaluating_A_Multithreaded_Superscalar_Microprocessor_Versus_A_Multiprocessor_Chip?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2738477_Evaluating_A_Multithreaded_Superscalar_Microprocessor_Versus_A_Multiprocessor_Chip?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2738477_Evaluating_A_Multithreaded_Superscalar_Microprocessor_Versus_A_Multiprocessor_Chip?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3733106_Control_speculation_in_multithreaded_processors_through_dynamic_loop_detection?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3733106_Control_speculation_in_multithreaded_processors_through_dynamic_loop_detection?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/242609872_Increasing_superscalar_performance_through_multistreaming?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/242609872_Increasing_superscalar_performance_through_multistreaming?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2885022_Memory_Dependence_Prediction?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2885022_Memory_Dependence_Prediction?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/226113566_The_El'brus-3_and_MARS-M_Recent_advances_in_Russian_high-performance_computing?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/226113566_The_El'brus-3_and_MARS-M_Recent_advances_in_Russian_high-performance_computing?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/226113566_The_El'brus-3_and_MARS-M_Recent_advances_in_Russian_high-performance_computing?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3214970_Exploiting_instrucion-_and_data-level_parallelism?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3214970_Exploiting_instrucion-_and_data-level_parallelism?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3838548_Quantifying_the_SMT_layout_overhead-does_SMT_pull_its_weight?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3838548_Quantifying_the_SMT_layout_overhead-does_SMT_pull_its_weight?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3838548_Quantifying_the_SMT_layout_overhead-does_SMT_pull_its_weight?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3838548_Quantifying_the_SMT_layout_overhead-does_SMT_pull_its_weight?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3661213_Simultaneous_multithreading_Maximizing_on-chip_parallelism?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3661213_Simultaneous_multithreading_Maximizing_on-chip_parallelism?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3661213_Simultaneous_multithreading_Maximizing_on-chip_parallelism?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3661213_Simultaneous_multithreading_Maximizing_on-chip_parallelism?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3558024_Performance_estimation_of_multistreamed_superscalar_processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3558024_Performance_estimation_of_multistreamed_superscalar_processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3558024_Performance_estimation_of_multistreamed_superscalar_processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3558024_Performance_estimation_of_multistreamed_superscalar_processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3044135_Concurrent_event_handling_through_multithreading?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3044135_Concurrent_event_handling_through_multithreading?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3044135_Concurrent_event_handling_through_multithreading?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3826153_On_dynamic_speculative_thread_partitioning_and_the_MEM-slicingalgorithm?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3826153_On_dynamic_speculative_thread_partitioning_and_the_MEM-slicingalgorithm?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3826153_On_dynamic_speculative_thread_partitioning_and_the_MEM-slicingalgorithm?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/36452112_Identifying_bottlenecks_in_a_multithreaded_superscalar_processor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/36452112_Identifying_bottlenecks_in_a_multithreaded_superscalar_processor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/36452112_Identifying_bottlenecks_in_a_multithreaded_superscalar_processor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==


348 T. UNGERER, B. ROBIČ AND J. ŠILC

Sweden, June 30–July 4, pp. 2–13. ACM/IEEE Computer
Society Press, Los Alamitos, CA.

[99] Collins, J. D. et al. (2001) Speculative precomputation:
long-range prefetching of delinquent loads. In Proc. 28th
ISCA, Göteborg, Sweden, June 30–July 4, pp. 14–25.
ACM/IEEE Computer Society Press, Los Alamitos, CA.

[100] Luk, H.-K. (2001) Tolerating memory latency through
software-controlled pre-execution in simultaneous multi-
threading processors. In Proc. 28th ISCA, Göteborg, Swe-
den, June 30–July 4, pp. 40–51. ACM/IEEE Computer So-
ciety Press, Los Alamitos, CA.

[101] Ranganathan, N. and Franklin, M. (1998) An empirical
study of decentralized ILP execution models. In Proc. Int.
Conf. ASPLOS-VIII, San Jose, CA, 3–7 October, pp. 272–
281. ACM Press.

[102] Kavi, K. M., Arul, J. and Giorgi, R. (2000) Execution and
cache performance of the Scheduled Dataflow Architecture.
J. Universal Comp. Sci., 6, 948–967.

[103] Unger, A., Ungerer, T. and Zehendner, E. (1998) A compiler
technique for speculative execution of alternative program
paths targeting multithreaded architectures. In Proc. Yale
Multithreaded Programming Workshop, New Haven, CT,
June.

[104] Unger, A., Ungerer, T. and Zehendner, E. (1998) Static
speculation, dynamic resolution. In Proc. 7th Workshop
Compilers for Parallel Computers, Linkoping, Sweden,
June–July, pp. 243–253.

[105] Unger, A., Ungerer, T. and Zehendner, E. (1999) Compiler
supported speculative execution on SMT processors. In
Proc. 3rd Workshop MTEAC, Orlando, FL, 9 January.

[106] Unger, A., Ungerer, T. and Zehendner, E. (1999) Simulta-
neous speculation scheduling. In Proc. 11th Symp. on Com-
puter Architecture and High Performance Computing, Natal,
Brazil, 29 September–2 October, pp. 175–182.

[107] Heil, T. H. and Smith, J. E. (1996) Selective Dual Path
Execution. Technical Report, Department of Electrical and
Computer Engineering, University of Wisconsin-Madison.

[108] Tyson, G., Lick, K. and Farrens, M. (1997) Limited
Dual Path Execution. Technical Report CSE-TR 346-97,
University of Michigan.

[109] Uht, A. K. and Sindagi, V. (1995) Disjoint eager execution:
an optimal form of speculative execution. In Proc. 28th Int.
Symp. MICRO, Ann Arbor, MI, November 29–December 1,
pp. 313–325. IEEE Computer Society, Los Alamitos, CA.

[110] Jacobsen, E., Rotenberg, E. and Smith, J. E. (1996) Assign-
ing confidence to control conditional branch predictions. In
Proc. 28th Int. Symp. MICRO, Paris, France, 2–4 December,
pp. 142–152. IEEE Computer Society, Los Alamitos, CA.

[111] Wittenburg, J. P., Meyer, G. and Pirsch, P. (1999)
Adapting and extending simultaneous multithreading for
high performance video signal processing applications. In
Proc. 3rd Workshop MTEAC, Orlando, FL, January 9.

[112] Metzner, A. and Niehaus, J. (2000) MSPARC: multithread-
ing in real-time architectures. J. Universal Comp. Sci., 6,
1034–1051.

[113] Lüth, K., Metzner, A., Piekenkamp, T. and Risu, J. (1997)
The events approach to rapid prototyping for embedded con-
trol system. In Proc. Workshop Zielarchitekturen eingebet-
teter Systeme, pp. 45–54.

[114] Brinkschulte, U. et al. (1999) A multithreaded Java micro-
controller for thread-oriented real-time event-handling. In
Proc. Conf. PACT, Newport Beach, CA, October 12–16,

pp. 34–39. IEEE Computer Society Press, Los Alamitos,
CA.

[115] Brinkschulte, U. et al. (1999) The Komodo project: thread-
based event handling supported by a multithreaded Java
microcontroller. In Proc. 25th Euromicro Conf., Milano,
Italy, September 4–7, pp. 2:122–128. IEEE Computer
Society Press, Los Alamitos, CA.

[116] Kreuzinger, J. et al. (2000) Real-time scheduling on
multithreaded processors. In Proc. 7th Int. Conf. Real-Time
Comp. Sys. and Applications, Cheju Island, South Korea,
December, pp. 155–159.

[117] Brinkschulte, U. et al. (2001) A microkernel middleware
architecture for distributed embedded real-time systems. In
Proc. 20th IEEE Symp. Reliable Distributed Systems, New
Orleans, October 28–31, pp. 218–226.

[118] Fuhrmann, S. et al. (2001) Real-time garbage collection
for a multithreaded Java microcontroller. In Proc. 4th
IEEE Int. Symp. Object-Oriented Real-Time Distr. Comput.,
Magdeburg, Germany, May, pp. 69–76.

[119] Milutinović, V. (2000) Surviving the Design of Micropro-
cessor and Multimicroprocessor Systems: Lessons Learned.
Wiley-Interscience, New York.

[120] Nayfeh, B.A., Hammond, L. and Olukotun, K. (1996)
Evaluation of design alternatives for a multiprocessor
microprocessor. In Proc. 23rd ISCA, Philadelphia, PA,
May 22–24, pp. 67–77. ACM Press, New York.

[121] Olukotun, K. et al. (1996) The case for a single-chip
multiprocessor. In Proc. Int. Conf. ASPLOS-VII, Cambridge,
MA, October 1–5, pp. 2–11. ACM Press, New York.

[122] Hammond, L. and Olukotun, K. (1998) Considerations in
the Design of Hydra: A Multiprocessor-on-chip Microarchi-
tecture. Technical Report CSL-TR-98-749, Computer Sys-
tems Laboratory, Stanford University.

[123] Diefendorff, K. (1999) Power4 focuses on memory
bandwidth. Microproc. Rep., 13.

[124] Texas Instruments (1994) TMS320C80 Technical Brief.
Texas Instruments, Houston, TX.

[125] Golston, J. (1996) Single-chip H.324 videoconferencing.
IEEE Micro, 16, 21–33.

[126] Yamauchio, T., Hammond, L. and Olukotun, K. (1997)
A Single Chip Multiprocessor Integrated with DRAM.
Technical Report CSL-TR-97-731, Computer Systems
Laboratory, Stanford University.

[127] Hammond, L., Willey, M. and Olukotun, K. (1998) Data
speculation support for a chip multiprocessor. In Proc. Int.
Conf. ASPLOS-VIII, San Jose, CA, October 3–7, pp. 58–69.
ACM Press, New York.

[128] Warnock, J. D. et al. (2002) The circuit and physical design
of the POWER4 microprocessor. IBM J. Res. Develop., 46,
27–52.

[129] Hammond, L., Nayfeh, B. A. and Olukotun, K. (1997) A
single-chip multiprocessor. Computer, 30, 79–85.

[130] Krishnan, V. and Torellas, J. (1998) A clustered approach
to multithreaded processors. In Proc. IPPS/SPDP Conf.,
Orlando, FL, March–April, pp. 627–634.

[131] Sohi, G. S. (2000) Microprocessors—10 years back, 10
years ahead. Lecture Notes Comp. Sci., 2000, 208–218.

[132] Sudharsanan, S. (2000) MAJC-5200: a high performance
microprocessor for multimedia computing. Lecture Notes
Comput. Sci., 1800, 163–170.

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

https://www.researchgate.net/publication/220952580_MAJC-5200_A_High_Performance_Microprocessor_for_Multimedia_Computing?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/220952580_MAJC-5200_A_High_Performance_Microprocessor_for_Multimedia_Computing?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/220952580_MAJC-5200_A_High_Performance_Microprocessor_for_Multimedia_Computing?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3214882_Single-chip_H324_videoconferencing?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3214882_Single-chip_H324_videoconferencing?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2536493_Execution_and_Cache_Performance_of_the_Scheduled_Dataflow_Architecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2536493_Execution_and_Cache_Performance_of_the_Scheduled_Dataflow_Architecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/228606748_MSPARC_Multithreading_in_real-time_architectures?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/228606748_MSPARC_Multithreading_in_real-time_architectures?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/228606748_MSPARC_Multithreading_in_real-time_architectures?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/221025421_Microprocessors_-_10_Years_Back_10_Years_Ahead?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/221025421_Microprocessors_-_10_Years_Back_10_Years_Ahead?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3905732_Tolerating_memory_latency_through_software-controlled_pre-execution_in_simultaneous_multithreading_processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3905732_Tolerating_memory_latency_through_software-controlled_pre-execution_in_simultaneous_multithreading_processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3905732_Tolerating_memory_latency_through_software-controlled_pre-execution_in_simultaneous_multithreading_processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3905732_Tolerating_memory_latency_through_software-controlled_pre-execution_in_simultaneous_multithreading_processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3905732_Tolerating_memory_latency_through_software-controlled_pre-execution_in_simultaneous_multithreading_processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/228744695_Limited_dual_path_execution?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/228744695_Limited_dual_path_execution?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/228744695_Limited_dual_path_execution?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2252624_The_EVENTS_Approach_to_Rapid_Prototyping_for_Embedded_Control_Systems?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2252624_The_EVENTS_Approach_to_Rapid_Prototyping_for_Embedded_Control_Systems?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2252624_The_EVENTS_Approach_to_Rapid_Prototyping_for_Embedded_Control_Systems?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2252624_The_EVENTS_Approach_to_Rapid_Prototyping_for_Embedded_Control_Systems?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2487263_A_Single_Chip_Multiprocessor_Integrated_with_DRAM?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2487263_A_Single_Chip_Multiprocessor_Integrated_with_DRAM?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2487263_A_Single_Chip_Multiprocessor_Integrated_with_DRAM?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2487263_A_Single_Chip_Multiprocessor_Integrated_with_DRAM?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/220938731_Data_Speculation_Support_for_a_Chip_Multiprocessor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/220938731_Data_Speculation_Support_for_a_Chip_Multiprocessor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/220938731_Data_Speculation_Support_for_a_Chip_Multiprocessor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/220938731_Data_Speculation_Support_for_a_Chip_Multiprocessor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3744150_A_clustered_approach_to_multithreaded_processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3744150_A_clustered_approach_to_multithreaded_processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3744150_A_clustered_approach_to_multithreaded_processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2339242_A_Compiler_Technique_for_Speculative_Execution_of_Alternative_Program_Paths_Targeting_Multithreaded_Architectures?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2339242_A_Compiler_Technique_for_Speculative_Execution_of_Alternative_Program_Paths_Targeting_Multithreaded_Architectures?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2339242_A_Compiler_Technique_for_Speculative_Execution_of_Alternative_Program_Paths_Targeting_Multithreaded_Architectures?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2339242_A_Compiler_Technique_for_Speculative_Execution_of_Alternative_Program_Paths_Targeting_Multithreaded_Architectures?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2339242_A_Compiler_Technique_for_Speculative_Execution_of_Alternative_Program_Paths_Targeting_Multithreaded_Architectures?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/4206001_Evaluation_of_Design_Alternatives_for_a_Multiprocessor_Microprocessor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/4206001_Evaluation_of_Design_Alternatives_for_a_Multiprocessor_Microprocessor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/4206001_Evaluation_of_Design_Alternatives_for_a_Multiprocessor_Microprocessor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/4206001_Evaluation_of_Design_Alternatives_for_a_Multiprocessor_Microprocessor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2284371_Compiler_Supported_Speculative_Execution_on_SMT_Processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2284371_Compiler_Supported_Speculative_Execution_on_SMT_Processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2284371_Compiler_Supported_Speculative_Execution_on_SMT_Processors?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3675414_Assigning_confidence_to_conditional_branch_predictions?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3675414_Assigning_confidence_to_conditional_branch_predictions?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3675414_Assigning_confidence_to_conditional_branch_predictions?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/3675414_Assigning_confidence_to_conditional_branch_predictions?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2740919_Disjoint_Eager_Execution_An_Optimal_Form_of_Speculative_Execution?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2740919_Disjoint_Eager_Execution_An_Optimal_Form_of_Speculative_Execution?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2740919_Disjoint_Eager_Execution_An_Optimal_Form_of_Speculative_Execution?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2740919_Disjoint_Eager_Execution_An_Optimal_Form_of_Speculative_Execution?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2281316_Static_Speculation_Dynamic_Resolution?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2281316_Static_Speculation_Dynamic_Resolution?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2281316_Static_Speculation_Dynamic_Resolution?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2281316_Static_Speculation_Dynamic_Resolution?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2497137_An_Empirical_Study_of_Decentralized_ILP_Execution_Models?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2497137_An_Empirical_Study_of_Decentralized_ILP_Execution_Models?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2497137_An_Empirical_Study_of_Decentralized_ILP_Execution_Models?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2497137_An_Empirical_Study_of_Decentralized_ILP_Execution_Models?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2529630_Selective_Dual_Path_Execution?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2529630_Selective_Dual_Path_Execution?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2529630_Selective_Dual_Path_Execution?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2954823_A_single-chip_multiprocessor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2954823_A_single-chip_multiprocessor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/2954823_A_single-chip_multiprocessor?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/242565150_Considerations_in_the_Design_of_Hydra_A_Multiprocessor-on-a-Chip_Microarchitecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/242565150_Considerations_in_the_Design_of_Hydra_A_Multiprocessor-on-a-Chip_Microarchitecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/242565150_Considerations_in_the_Design_of_Hydra_A_Multiprocessor-on-a-Chip_Microarchitecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==
https://www.researchgate.net/publication/242565150_Considerations_in_the_Design_of_Hydra_A_Multiprocessor-on-a-Chip_Microarchitecture?el=1_x_8&enrichId=rgreq-75fbcbc740a8515ef6ee7caa27677b33-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ1ODkxNTtBUzoxMDIzMDgzNDgxNzAyNDRAMTQwMTQwMzYxOTI0Mg==

