
ASYNCHRONOUS MICRO-PIPELINE

WITH MULTI-STAGE SECTIONS

Dimitar S. Tyanev
1
, Stefka I. Popova

2

Abstract: The interface of multi-stage micro-pipeline sections

building continuous micro-pipelines is defined and analyzed. As

the multi-stage micro-pipeline sections have own memory, such

micro-pipelines don’t need additional registers. In these

conditions there is pipeline asynchronous protocol and

implementing control unit synthesized. The protocol’s operation

is shown in cases, arising from combined work of neighbor multi-

stage micro-pipeline sections. Possible problems of combining

one- and multi-stage sections are indicated.

Keywords: Computational devices, Micro-pipeline, Race

conditions, Synchronization.

I. INTRODUCTION

 Micro-pipelines contain consecutively connected micro-

pipeline sections which structure is made of register and logic

(for example [6÷18] or another). The register supports the

data and the logic implements the necessary computations, but

it is not required. If the delays describing the particular

sections are relatively the same, there is common control and

the micro-pipeline is defined as synchronous. If the delays are

significantly different, the control is distributed and the micro-

pipeline is determined as asynchronous. After every

registration impulse new data enters and is processed at

certain section in the both types of micro-pipelines. So after

each impulse the intermediate results are moving from section

to section. In these terms the micro-pipeline sections in such

kind of pipelines are defined as one-stage. The stage period at

particular sections is set by the switching time of the logic.

 Data shifting from section to section in asynchronous

micro-pipelines of mentioned type is implemented after the

hand-shake principle, in 2-phase or 4-phase protocol. The

protocol is realized by control block, containing some version

of well-known Mueller C-element [5÷18]. The nature of

control is asynchronous because the shifting of current results

to the next section is possible only if the last is not busy. This

is the main reason such type of micro-pipelines to be defined

as asynchronous.

 Micro-pipeline sections (MPS) with internal feedback are

presented in [1÷4]. These sections implement iterative

computations and are designed as synchronous devices. They

work as synchronous because of local clock. Such micro-

pipeline sections can be determined as multi-stage on account

of the internal (local) clock. The delays generated from these

sections are significantly different amongst themselves, as

well as compared to the delays from one-stage sections, so as

devices they can be included only in asynchronous micro-

pipelines. As the multi-stage micro-pipeline sections have

their own memory, the micro-pipelines with such sections

don’t need additional pipeline registers. This paper presents

the interface of this kind of multi-stage micro-pipeline

sections and the control possibility with serial inclusion.

II. MULTI-STAGE MICRO-PIPELINE SECTION

 Micro-pipeline sections with internal feedback can be

presented by the following general structure:

DataIn

O
p
er

at
io

n

L
o
g

ic

DataOut Register

File

Local

Clock

Control

CS

CS SS

SS

Figure 1 Structure of multi-stage micro-pipeline section

 The structure contains three basic elements – register file

(Register File), which consists of one or more registers

(pipeline fixers) and set of combinatorial logic (Operation

Logic) implementing necessary computations. The main

characteristic of this structure is the internal feedback. The

third element (Control) is integral part of such sections and

realizes their internal control. Some of the tasks of the internal

control will be discussed in this paper. The most important

function of the internal control is to carry out the

communication between sections and to process and generate

the respective signals (Status Signals, Control Signals).

 Multi-stage micro-pipeline sections are intended to

implement various types of cyclic algorithmic structures. The

iterative computations carried by such sections lead to long

detention of the main computational process, which allows

them to be defined as very asynchronous regarding to it.

 Micro-pipeline sections of presented type can be stable in

one of the next three states:

1. “Free” state. It means that the result of computations

in the current section k is sent through the output bus DataOut

to the next section k+1 and the last confirm the reception. In

this state the logic connections in the structure are determined

so the section is ready for the next start. In these terms, the

state “Free” is the information necessary to section k-1,

because there is no sense to be started if the next is not free;

1
Dimitar S. Tyanev is with the Faculty of Computer Sciences and

Technologies, Technical University of Varna, Bulgaria.

e-mail: dstyanev@yahoo.com
2Stefka I. Popova is with the Faculty of Computer Sciences and

Technologies, Technical University of Varna, Bulgaria.

e-mail: s_ivanova@abv.bg

2. “Busy” state. Current section k is in this state during

the implemented cyclic computations. At this time the input

data bus DataIn is switched off and the data on it does not

have any impact on its structure. The data on its output bus

DataOut is not valid so it shouldn’t be accepted and used by

the next section;

3. “Ready” state. It is alternative to the previous state. It

occurs in the current section k when its computations finish

and the true value of the result are set on the output bus

DataOut. In this state the section supports the obtained result

on the output bus so it is still only there.

Note: All micro-pipeline sections in certain micro-pipeline

should be forced to “Free” state after the power

switching, as well as in other situations that require

this state. The last is defined as initial or last state for

the particular section and for the pipeline in general.

 At the time of the pipeline operation the order of the

states in each section is as follows:

... “Free”, “Busy”, “Ready”, “Free”, “Busy”, “Ready”, ...

States in which every section of the micro-pipeline could be

are declared by the following signals (signals of SS type):

1. Signal kF (Free). It is produced after switching of the

section in “Free” state. This signal is conditionally directed to

the back, i.e. to the previous section k-1;

2. Signal kB (Busy). It is produced after switching of the

section in “Busy” state. The signal is directed to the back as

well;

3. Signal kR (Ready). This signal is produced after

switching of the section in “Ready” state. It is conditionally

directed to the front, i.e. to the next section k+1.

III. CONSECUTIVE INCLUSION OF MULTI-

STAGE MICRO-PIPELINE SECTIONS

 Multi-stage micro-pipeline sections are included in exact

sequence according on the current algorithm. In order to the

pipeline organization there is certain control required,

depending on the signals SS and CS. The control of the

connection between each pair neighbor sections is assigned to

control automation (CA) which must recognize the states of

the both sections and to manage their dialogue. In other

words, this automation has to synchronize the common work

of two neighbor sections using signals of SS type and in

response to produce the necessary CS-signals (Figure 1). In

conformity with Section 1, the pipeline automation should be

asynchronous. Figure 2 presents pipeline from the discussed

type.

 As it seen from the figure, the control automation CA

generates two control signals:

M
P

S
 k

-1

CA

Rk-1

Data Bus

Ak-1

Fk

Gk

Bk CA

Rk

Data Bus

Ak

Fk+1

Gk+1

Bk+1

M
P

S
 k

M
P

S
 k

+
2

CA

Rk+1

Data Bus

Ak+1

Fk+2

Gk+2

Bk+2

M
P

S
 k

+
1

Figure 2 Micro-pipeline with multi-stage sections

1. Signal 1+kG (Go). With this signal the automation

starts computations into the next micro-pipeline section, i.e.

the signal is directed to the front. The emission of this signal

must be possible only if the previous section is in “Ready”

state and next – in “Free” state. This is situation in which the

previous section finished its computations and supports the

results on the output bus. At the same time the next section is

free and waits for new data;

2. Signal kA (Acknowledgement). With this signal the

automation informs the previous section that transferred data

is successfully received by the next one. The signal is condi-

tionally directed to the back. The previous section must

announce “Free” state in response. The logic of such state is

presented as:

.ARF kkk 1+
∩= (3.1)

 The control automation’s operation is showed by the graph

at Figure 3. The graph shows that the automation has two

states. The initial state is marked as S0. In this state the

automation supports the signal kA which is a reason for the

“Free” state of section k. From this state automation is swit-

ched to state S1 only when the two neighbor sections

complete the required transition condition:

TrueFR kk =∩
+1 . Once automation is in S1 state it

produces the signal 1+kG . This signal appears to be initial for

the next section k+1.

S0 S1

Gk+1

(Rk ∩ Fk+1)

Bk+1

Ak Bk+1

(Rk∩Fk+1) ∪

∪ (Rk∩Fk+1) ∪

∪ (Rk∩Fk+1)

Reset

Figure 3 Transition graph in CA

 After section k+1 begin its operation, it passes to “Busy”

state and forms signal 1+kB . This signal causes the switching

of the synchronizing automation back to the initial state S0.

From this state is produced signal kA which informs the

previous section about the successful transfer of its data to the

next section. It is the end of the exchange session at this stage

of the micro-pipeline.

 The synthesis of the pipeline automation in terms of the

transition graph from Figure 3 leads to the principal logic

structure presented at Figure 4 in two variants:

Ak

&

SL RL

TL

Rk

Fk+1

Bk+1

Gok+1

1

Reset

&

SL RL

Rk

Fk+1

Bk+1

1

Reset

& &

Ak Gok+1

Figure 4 Principal structure of CA

 The automation is implemented following Moore’s

structure by one asynchronous RS-Latch flip-flop. Internal

states of the automation are coded as follows:

.QS1,QS0 == (3.2)

So the right input implements signal Go and the inverse input

– signal Acknowledgement.

 Because of the different duration of the computations in

two neighbor sections there are two possible situations for the

control automation, for example:

1. Section k+1 is free and waits for the end of section

k’s computations;

2. Conversely, the section k is ready and waits for the

end of computations in section k+1.

 The time-diagram from Figure 5 shows these two cases of

the pipeline automation switching. In the first situation (the

left half) section k+1 waits for the data from section k. The

automation is in S0 state, waiting for signal kR .

 In the second case (the right half) section k+1 still works

while the previous section k finish computations and is in

“Ready” state at the same time, producing signal kR . With

this signal the automation is switched to S1 state from the S0

state.

 The transitional process corresponding to automation’s

graph is presented twice – into the left and into the right side

of the time-diagram at Figure 5 and shows the beginning,

work, final and repeated start of the micro-pipeline section

k+1. Analyzing this time-diagram can be concluded that the

control automation implements 4-phase protocol.

Rk

Fk+1

A k

Bk+1

G k+1

R∩ F

S
(t)

 S0 S1 S0 S0 S1 S0

W orking (k+1)

1

2

Figure 5 Switching of the synchronization automation

IV. SYNCHRONIZER

 For starting the computational process in multi-stage

micro-pipeline sections [1], [2], [3], [4] is required start

impulse, conditionally called Enable which must be

synchronous with the rising edge of the local clock impulses

and to have duration up to one period. From discussion in

Section 3 is clear that the parent of the start signal will be the

asynchronous control automation which generates signal Go.

This signal is asynchronous regarding to the local clock

impulses. Thus, there is a task for the signal Go converting

into signal Enable.

 The task of converting asynchronous signal into

synchronous is illustrated by the time-diagram at Figure 6:

C lock

E na b le

G o

B u sy

Figure 6 Time-diagram of synchronization

 Can be seen that the signal Go appears asynchronously in

the time of clock impulse from the Clock sequence. The start

impulse Enable to MPS follows as response. With appearance

of the Busy signal disappear the signals Go, which is function

of the pipeline automation, and Enable, which should be

function of the synchronization schema. Signal Busy

characterizes the state of the micro-pipeline section, as it was

described in Section 2.

 The schema, which implements expressed logic, is

presented at the following figure:

 A)

C

D

C
lr

TE

Clock

Go

Busy

Enable

 B)

C

D

C
lr

TE

Clock

Go

Busy

Enable

&

Figure 7 Principal structure of the synchronizer

 There is dynamic D flip-flop with Edge structure used,

which is basic approach for synchronization of asynchronous

signals [15, 19, 20, 21, 22]. Fixing of the signal Go’s logic

value is made with the rising edge of the clock impulse. If it is

missed, as it shown at Figure 6, it could be done with the next

impulse. For reliable fixing there must be restriction on the

initial asynchronous value. This value should be kept in time

during the following period:

,1tTtGo +≥ (4.1)

where Got is the duration of the signal Go;

 T is the period of signal Clock;

 1t is the duration of single impulse into signal Clock.

 If the signal Go has significantly bigger duration, in the

name of the necessary duration of Enable signal is used forced

cleaning of the flip-flop by the Clr (Clear) input. Notice that

this input is with high priority and if the signal Busy is

connected to it (Busy is active through all computational

cycle), the forced keeping of the flip-flop in zero state is

guarantee for reliability and makes impossible false values of

the signal Enable.

 There are two options for the synchronizations schema

(look Figure 7). The variant A synchronizes by the rising and

by the falling edge; the variant B synchronizes only by the

rising edge. In the last variant, because the Enable signal is

function of the input signal Go, it is the direct reason for its

disappearance. The synchronizer should be assumed as part of

the logic of every multi-stage micro-pipeline section.

V. CONCLUSION

 Discussed in this paper type of micro-pipeline sections

and their serial inclusion in certain micro-pipeline is only one

special case. As it was told in the beginning, there are

different types of possible micro-pipeline sections. It is

possible their serial inclusion in various combinations, for

example: one-stage section followed by multi-stage section or

multi-stage section, followed by one-stage. If we consider

longer sequence, the possible combinations will be more. The

only one known case, which was mentioned in the

introduction, corresponds to sequence of one-stage micro-

pipeline sections, where the control automation is based on

Mueller C-element.

 While one-stage sections are served only by two signals,

usually called Request and Acknowledgment, for the multi-

stage sections is defined a few possible signals. However,

knowing the structure of the multi-stage sections we can claim

that there are preconditions for other interpretations, as well as

for possibilities for generalization. Admitting the mentioned

combinations of serial arrangement, it will lead to necessity of

different kinds of control automation. Of course, these

possibilities are topic of future work.

REFERENCES

[1]. Тянев, Д., Колев, С., Янев, Д., Метод за реализация на
апаратни самоуправляващи се циклически структури -

част II, “Компютърни науки и технологии”, ТУ-Варна,
ISSN 1312-3335, година V, брой №2/2007, стр. 23-30.

[2]. D. Tyanev, S. Kolev, D. Yanev, Micro-pipeline Section

For Condition-Controlled Loop, CompSysTech’09, 18-19

June 2009, Ruse, Bulgaria.

[3]. D. Tyanev, D. Yanev, S. Kolev, Method for realization of

self-controlling loop apparatus structures, Fifth ISCCS’09,

5-6 November 2009, Sofia, Bulgaria.

[4]. Тянев, Д. С., Колев, С. И., Йосифов, В., Метод за
реализация на апаратни самоуправляващи се
циклически структури, ТУ-Варна, ЮC “45 години ТУ-

Варна”, 2007, ISSN 1311-896X, стр. 130-135.

[5]. Миллер, Реймонд Е., Теория переключательных

схем, том 2 – последовательностные схемы и машины,

Москва, Издательство “Наука”, 1971.

[6]. Sutherland, Ivan E., Micropipelines.

[7]. Tiberiu Chelcea, Girish Venkataramani, Seth C.

Goldstein, SelfResetting Latches for Asynchronous

MicroPipelines, Proceedings of the 44th annual

ACM/IEEE Design Automation Conference, June 2007.

[8]. Mannakkara, C., Yoneda, T., Asynchronous pipeline

controller based on early acknowledgement protocol,

National Institute of Informatics: DI, Graduate University

for AS, Tokyo, Japan, NII-2009-015E, Sept. 2009.

[9]. GALAXY-Project, Milos Krstic, , Specification of

optimized GALS interfaces and application scenarios,

GALAXY, 12-2008.

[10]. Jens Muttersbach, Globally asynchronous locally

synchronous, architecture for VLSI Systems, PhD thesis

[PDF], ETH Zurich, Diss. ETH №14155, 2001.

[11]. Milos Krstic, Eckhard Grass, New GALS Technique

for Datapath Architectures, in Integrated circuit and

system design: power and timing modeling, by Jorge Juan

Chico, Enrico Macii, p.161, books.google.com, 2003;

Lecture Notes in Computer Science, ISSN 0302-9743,

Volume 2799/2003.

[12]. Eckhard Grass, Frank Winkler, Miloš Krsti,

Enhanced GALS Techniques for Datapath. Applications.

[13]. Xin Fan, Miloš Krstić, Eckhard Grass, Analysis and

Optimization of Pausible Clocking based GALS Design.

[14]. Kenneth Yun, Peter A. Beerely, Julio Arceo, High-

Performance Asynchronous Pipeline Circuits, In Proc.

International Symposium on Advanced Research in

Asynchronous Circuits and Systems, IEEE Computer

Society Press, 1996.

[15]. Ran Ginosar, Fourteen ways to fool your synchronizer -

Asynchronous Circuits, IEEE Pr. of the 9th ASYNC’03.

[16]. Stefan Hirschmann, Asynchronous processors,

Seminar Embedded System Design, Institute of Computer

Science, University of Innsbruck, February 25, 2008.

[17]. Chang-Jiu Chen, Wei-Min Cheng, Hung-Yue Tsai, Jen-

Chieh Wu, A quasi-delay-insensitive microprocessor core

Implementation for Microcontrollers, Journal of

information science and engineering 25, 543-557 2009.

[18]. Montek Singh, Chapel Hill, Steven M. Nowick, US

Patent, 2005/0156633, Circuits and methods for high-

capacity asynchronous pipeline processing.

[19]. Ronald J. Tocci, Neal S. Widmer, Digital systems:

principles and applications, 8
th

 ed., Prentice-Hall Inc.,

ISBN 0-13-085634-7, 2001.

[20]. Pong P. Chu, RTL Hardware Design Using VHDL:

Coding for Eflciency, Portability and Scahbility, Wiley

IEEE Press, ISBN-13: 978-0-471-72092-8, 2006.

[21]. Daniel Page, Practical Introduction to Computer

Architecture, Springer, ISBN 978-1-84882-255-9, 2009.

[22]. Richard F. Tinder, Asynchronous Sequential Machine

Design and Analysis, Morgan and Claypool, ISBN:

9781598296907, 2009.

