
Tyanev.com

Synthesis and Competitive Analysis of Multiple Inputs Parallel Adders

Dimitar S. Tyanev, Stefka I. Popova, Aleksandar I. Ivanov, Dragomir V. Yanev

Abstract: This paper submit the idea for parallel at time adding of more than
two integer numbers with schemes, known as concentrators. A logic structure of
adder with multiple inputs, based on three-input adder, is offered. Theorem for
the highest length of the sum is proved in conditions of arbitrary numbers. On the
ground of this theorem there are analytical estimations of implementation costs
and switching time. Comparative analysis of the competitive schemes is shown.
The conclusions proof acceptability of both researched idea and offered scheme.
The experiments with the schemes were made with the help of Xilinx tools and
FPGA-family Spartan II.

1. Problem formulation
 There are many applications that generate the problem of computing the sum like:

1=
= ∑

r

i
i

y x (1)

where , =ix i 1,r usually are n-bits numbers form the same type and format.
 As subtask, the sum (1) appears in the vector-matrix computations, in the problems of
mathematical statistic, the problems of digital processing of images and many more. As it showed
in the quoted literature [1÷12 and other], the idea about parallel adding is known in principle. This
idea is present in the contemporary analyses, searching for fast machine one part time and/or
conveyer decisions. There are different suggestions about the adding, but predominant is the use
of binary schemes with three inputs and so-called saved carry (carry save adders). At the same
time there is lack of analytical and competitive estimations, as well as the reasons for the choice.
In [7] there is method for analysis of transitional processes in similar schemes.
 In this paper we offer another machine implementation, as well as our examination of it, which
is shown consecutively.

2. Consecutive addition
 The classic two-seated arithmetic operation addition

1 2= +y x x (2)
corresponds to (1) and is realized by known logical schemes of n-bit binary adder. It is known [5],
that the most inexpensive and the fastest at the same time binary combinational adder is the adder
with accelerated consecutive carry, which we choose for base, and it has switching time

.Σ ,= τt n (3)
where τ is the switching time of full one-bit binary combinational adder.
 So the task for computing of (1) can be solved with the help of next logical structure:

x1
x2

Σ1

x4
x3

Σ2

y

Σ3

xr

Σ(
r-

1)

Figure1. Consecutive addition

1

Tyanev.com

 Although at the structure above all the elements of the sum are given simultaneously, the
result y is received by consecutive adding of the particular mediate sums Σi with the current
operand . However, every single of these mediate sums could be prolonged with maximum one
bit from the left because of the arising carry. So, if the adder Σ

ix
1 has n-bits, then the adder Σ2 got to

have (n+1)-bits. Further, by analogy follows adder Σ3 – (n+2)-bits, adder Σ4 – (n+3)-bits and so
on. The last adder Σ(r-1) got to have (n+r-2) bits. It is expected, that full adding in this adder will
be realized only in the junior n-bits, where the last addends are given. Full addition in the
senior (r-2) bits is impossible. Only distribution and adding with likely carry from the (n-1)-bit is
possible. As we consider, that the length of the addends

ix

ix is one and the same, the possibility
about prolonging of the mediate sum decreases as result of the separate levels. This means that
determined above length of the last adder is unreal. It is the same for the length of the adders from
lower levels. But there is no doubt that the highest possible length of final sum depends from the
count of addends r. This non-conformity leads to the following theorem:

Theorem:
The highest possible length of the sum of r n-bit integer numbers is equal to

⎣ ⎦ 12 ++)rn log ([b]. (4)
Proof:
 Highest possible sum of r numbers from the same type is received when these numbers has the
highest possible for their length value 12X n −= . In this case the sum (1) of these numbers from
the same type could be described as follows:

1
.

=
=∑

r

i
i

x r X . (5)

 The number with highest value X actually is binary polynomial from (n-1) row. At the same
time for the multiplicand r in (5) we can assert, that as binary number is in the range:

1qq 2r2 +<< , (6)

where the row of its binary polynomial is q, i.e. (q)
rPr = . So, the unknown quantity q can be

found from the inequality above, in the conditions of certain excess, after operation logarithm:
⎣ ⎦)(log rq 2= . (7)

 It is known, that the quantity of digits in a number is bigger with one from the row of its
polynomial [5]. So the number r in binary system will have (q+1) digits. As a result, the highest
possible length, required for registration of the highest sum from r elements, is equal to:

⎣ ⎦)()(1)(1 2 ++=++ rnqn log [b] , (8)
Q.E.D.
 In the special case, when qr 2= , the required length for the sum is (n+q).
 Proven theorem provides true necessary and sufficient length for registration of every sum
with rate frequency r and description like (1). The value of deduced extension (q+l) [b] for
result’s field is at the same time minimum required. Comparing theorem’s result with defined
length of final adder in structure at Figure 1 – (n+r-2) [b], we will prove, that last is bigger than
necessary and is unreal, as was mentioned above.
 This statement we can describe with following ratio:

n+(q+1) < n+(r-2) . (9)
 After replacing of q and transforming of expression, the equivalent ration is

⎣ ⎦ 3rr)(2 −<log . (10)
 Then with anti-logarithm of the two sides of the ratio:

3r2r −
< . (11)

 The last is true for every r>6.

2

Tyanev.com

 The logical structure from Figure 1 can be optimized to correspond to required and enough
length (4) in connection with proven ratio. For that purpose, if the length of basic adder is
determined by (4), then on the strength of the proven theorem it has to be applied for every single
lower level of the structure. This means for the first (r-1) levels, then for the first (r-2) levels and
so on. Finally in the structure there will be particular groups from adders with one and the same
length, which definitely will not generate senior carry.
 The sum of different level’s implementation outlays represents total cost for machine
realization. The outlays for implementing adders at levels depends from their current length,
which can be represent like

⎣ ⎦ .1r,1k,knLk −=+=)(log2 (12)
where k is the number of the level, where the serial adder belongs. So machine cost for
implementation of the structure from Figure 1 can be estimated through total count of binary
adders by next sum:

⎣ .k.n1rQ
1r

1
⎦

k
∑
−

=
+−=)(log)(2 (13)

 Second estimation, which should be taken into consideration, is logical structure’s switching
time. Because of nature of the process, realized by the scheme, switching time can be defined
from how far carry is distributed. Since carry is distributing across length of every adder and
through all levels to the final, then estimation is

()Σt n 2.r 3 .τ .= + − (14)
 Notice that this estimation (as highest) cannot be reached for every r, because the carry is
function of current addends.

3. Parallel addition
 Analyzing structure from Figure 1 we can mention, that the only pure parallel addition is
accomplished between numbers x1 and x2 in adder Σ1. All other numbers – x3, x4, x5, …, xr
consecutively heap up in the final sum. For the sake of faster operation of the scheme, we suggest
parallel organization to be propagating through all possible pairs of addends, which lead us to
Figure 2.

x1
x2

x4
x3

Σ1

y

Σ2

xr
x(r-1)

Σ0

Σ
(q

-1
)

Σ0

x5
x6

x8
x7

Σ1

Σ0

Σ0

Σ1

Σ2

Σ0

Σ0

Σ1

Σ0

Σ0

Figure 2. Parallel-consecutive addition

 As it shown, r/2 two-input n-bits adders Σ0 are arranged at first row. At the next row the count
of adders decreasing two times again, but adders Σ1 have (n+1)-bits. So is certain force to make

3

Tyanev.com

presented consecutive connection, which forms pyramid-like model of the scheme. The count of
levels in this pyramid is q, where last adder Σq-1 has (n+q)-bits. In conjunction with the senior
carry those adder receives (n+q+1)-bits result y.
 The machine implementation cost for the structure from Figure 2 can be estimated
analogically:

.).1(...).2().1(. 110 2 −−+++++++= qNqnNnNnNnQ , (15)

where the count of the binary adders at particular levels changes as follows

.1;....;
22

).2(
;

2
; 1

100
1

0
00 =⎥

⎦

⎥
⎢
⎣

⎢
=⎥

⎦

⎥
⎢
⎣

⎢ −+
=⎥

⎦

⎥
⎢
⎣

⎢
== −qN

rNrN
N

r
Nrr

 In case of odd number addends at one level, remaining element, which cannot form pair
addends, is directly sent to the next level, where in conjunction with received intermediate sums
takes part in the next pair’s addends. That’s why we will control the cyclic accumulation by
condition, depending of the parameter k – the count of levels in pyramid-like structure.
 In accordance with the upper row, generally the number of the binary adders at the pyramid’s
level k will be as follows:

.).2(;
22

).2(
111

111
−−−

−−− −+=⎥
⎦

⎥
⎢
⎣

⎢
=⎥

⎦

⎥
⎢
⎣

⎢ −+
= kkkk

kkkk
k NrNr

rNrN
N (16)

 Computations (16) will end when current number of the addends is equal to 1, i.e.
when . 1=kr
 Then the sum of 1-bit binary adders (15) will be finally represented through (16) like:

.
r

.Q
k

k)kn(∑
= ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎥
⎢
⎣

⎢
= +

0 2
 (17)

 Switching time of the structure from Figure 2 is again estimated by how long is distributed
carry for obtaining total sum in condition of adders with accelerated consecutive carry. As we
consider, that the adders from every particular level works parallel, switching time of the
pyramid-like structure can be estimated as

..)(τqnt 1−+=Σ (18)
 The sum reflects the length of adders in first level, which pass on received digits to the next
level right after their obtaining, where addition begins. Final sums at the output of the second
level will be late regarding to the initial moment, because of their additional senior bit. This
switching refers to all other levels.

4. Parallel addition by 3-input adders
 In contrast to idea for unfinished adding of three addends (3:2 CSA), discussed in [1, 2 and
others], [7] offers and estimates finalized scheme of an adder with 3-input concentrator. Achieved
scheme (Figure 3) is of type 3:1 CSA. Because this scheme has one output, its usage reduces the
count of levels. On the other side, it reduces the count of fixing registers in case of structures with
conveyer organization.

x1
x2
x3

S Σ
s

p

Figure 3. 3:1 CSA

 In this structure concentrator S is set of n complete 1-bit binary adders, which operate in
parallel mode. Latest scheme Σ is complete adder, which adds intermediate sums is with relevant
carry 11,,1-i nip −= .
 Technical estimations of the structure for n-bits numbers, shown at Figure 3, are represented
by next formulas. Cost of machine implementation is estimated by count of the 1-bit binary
adders:

4

Tyanev.com

nnnQ .2=+= , (19)
and switching time – by the switching time of the 1-bit binary adder:

.τ1nn.ττtΣ)(+=+= . (20)
 For initial task (1) instead of parallel addition of two numbers, what was suggested in section
3, it will be structured upon groups of 3 numbers. Using such approach in random situation – r-
times addition of n-bits numbers, guarantees minimal count of levels in the pyramid-like structure.
Generalized estimations about such structures are achieved through to an example - 8 times
addition of 8-bits numbers (Figure 4).

x1
x2
x3

S Σ
s1

p1
x4
x5
x6

s2

p2

x7
x8

s3

p3 y

z11

z12

z13

S Σ S

Σ

Σ

Figure 4. Adding scheme with 4 inputs

 At the first level of the structure, the count of the groups N has 3 addends, in which separates
the initial multitude of r addends, can be defined as

⎥
⎦

⎥
⎢
⎣

⎢
=

3
1

1
r

N , where .1 rr = (21)

 If the residual () 13mod1 == rmRe , there is one unused addend left. This addend is sent to the

next level of the pyramid, where forms triad with obtained from the first level sums z1i. In the
case () 23mod1 == rmRe , there are two unused addends left. Then additional full binary adder is
applied at the current level, what is the case with addends x7 and x8 in Figure 4.
 So the estimation of the machine cost Q1 for implementing of this level, represented like
number of 1-bit binary adders, is:

if then 21 =mRe)1.2.(..2 111 +=+= NnnNnQ
 else 11 ..2 NnQ = .

The arrangement and implementation of the following second level is similar. The number of 3
addends groups could be represent like: 2N

⎥
⎦

⎥
⎢
⎣

⎢
=

3
2

2
r

N , where the general number is defined by the rule: 2r

if then 01 ≠Rem 112 += Nr ; else 12 Nr = .
 The arrangement and implementation of the following second level is similar. The number of
3 addends groups could be represent like: 2N

if then 22 =Rem)1().1.(2 22 +++= nNnQ ;
 else 22).1.(2 NnQ += .

 To synthesize arbitrary level, upper rules can be generalized as follows:

⎥
⎦

⎥
⎢
⎣

⎢
= +

+ 3
1

1
k

k
r

N , (22)

where the general number addends is defined by the rule 1kr +
if then 0≠kRem 11 +=+ kk Nr else kk Nr =+1 . (23)

5

Tyanev.com

 So the estimation for total machine cost Qk+1 will be:
if then 21 =+kRem)]1.(2[)].1.(2.[2 11 −++−+= ++ knNknQ kk

else 11)].1.(2.[2 ++ −+= kk NknQ . (24)
 If current , the synthesis of the structure continues in the same way. Remaining two
cases leads to the last level in the pyramid, which is synthesized as follows:

3>kr

1. If , the pyramid ends with the structure from Figure 3, like the example from
Figure 4. In this case machine cost for the last level is

3=kr

)]2.(2.[2 −+= knQk ;
2. If , the pyramid ends only with full binary adder. In this case machine cost is 3<kr

)2.(2 −+= knQk .
 The relation is actually the condition about continuing or ending general rules for
synthesizing the pyramid. At the end total machine cost are the sum of implementation outlays of
particular levels:

3>kr

1 2 ...= + + + kQ Q Q Q . (25)
 The switching time of the structure at Figure 4 with arbitrary number of addends is estimated
again by the length of consecutively distributed carry when forming total result and in condition
of adders, constructed as described. Considering, that 3-input adders at particular levels works
parallel, we estimate the switching time of the pyramid-like structure as:

. (1). ()Σ .= + + − = +t τ n τ k τ n k .τ (26)
 The logic of this switching is analogical to the described for structure at Figure 2.

5. Theoretical conclusions
 Comparative estimations of the machine costs, necessary for implementation of the three
structures, which were considered, explained by the formulas (13), (17) and (25), are represented
in Tables 1, 2 and 3 respectively, and also in Figure 5. The results are for the operands with length
n=32[b].

Table 1 Consecutive addition
r= 8 16 24 32 40 48 56 64 72 128 256

Qk= 234 514 802 1090 1386 1682 1978 2274 2578 4700 9685

Table 2 Parallel addition
r= 8 16 24 32 40 48 56 64 72 128 256

Qk= 228 491 755 1018 1283 1546 1810 2073 2339 4184 8407

Table 3 Addition by 3-input schemes
r= 8 16 24 32 40 48 56 64 72 128 256

Qk= 228 492 754 1018 1282 1544 1808 2073 2339 4184 8410

r
8 16 24 32 40 48 56 64 72

200

500

800

1100

1400

1700

2000

2300

2600
Formula (13) Q

Formula (17)

Formula (25)

Figure 5. Machine costs Q depending from count of addends r

6

Tyanev.com

 The most important conclusions, which can be made from obtained results, are:
1. The machine costs in case of parallel organization are 10% lower;
2. 2- and 3-input schemes for parallel addition leads to identical machine costs;

 The comparative estimations of the operation of explained structures, on the basis of the time
for most delay through switching, determined by the formulas (14), (18) and (26), are represented
in the Table 4, 5 and 6 respectively, as it Figure 6.

Table 4 Consecutive addition

r= 8 16 24 32 40 48 56 64 72 128 256
tΣ= 45.τ 61.τ 77.τ 93.τ 109.τ 125.τ 141.τ 157.τ 173.τ 285.τ 541.τ

Table 5 Parallel addition
r= 8 16 24 32 40 48 56 64 72 128 256 1024 2048
tΣ= 34.τ 35.τ 35.τ 36.τ 36.τ 36.τ 36.τ 37.τ 37.τ 38.τ 39.τ 41.τ 51.τ

Table 6 Addition by 3-input schemes
r= 8 16 24 32 40 48 56 64 72 128 256 1024 2048
tΣ= 34.τ 35.τ 35.τ 36.τ 36.τ 36.τ 36.τ 36.τ 36.τ 37.τ 38.τ 39.τ 39.τ

r8 16 24 32 40 48 56 64 72

45
61
77
93

109
125
141
157
173

34

tΣ Formula (14)

Formula (18)

Formula (26)

Figure 6. Switching time tΣ depending form the count of addends r

 The main conclusions from the results are:
1. Significant superiority of the parallel organization over consecutive. This is because of

considerable smaller number levels in the pyramid-like organization;
2. 2- and 3-input schemes for parallel addition have slowly increasing difference in favor

of the second scheme. The absolute difference between them reaches 12
relative time units for 2048-times adding. But at the beginning of relations (for
example to 128-times addition) they can be considered as analogical (with
accuracy to 1).

6. Experimental results
 In conformation of achieved theoretical estimations about switching time, presented in tables 5
and 6, an experimental research and comparing of the logical structures form Figure 2 and Figure
4 was organized. The case of 8 time addition of 8-bit binary numbers was realized. As a merit of
the scheme from Figure 4 it is necessary to underline, that it can be loaded up with one more
number (in difference from the structure at Figure 2). It also can add 9 numbers with almost the
same machine resources and with the same switching time, which is not possible for the scheme at
Figure 2. The implementation of the schemes was made in ISE environment of Xilinx –
WEBPack. Under these conditions estimations of switching time in worst case, according to
formulas (18) and (26), are the same: .τtΣ 1)3(8 −+= ; .τtΣ 2)(8+= . As we consider the
logical scheme of 1-bit binary adder, for whom the estimation τ for even bits is proportional to 2
logical elements, and for odd bits – to 3 logical elements, we can assert, that the common
switching time of the schemes is in the range of [20÷30] relative time units.

7

Tyanev.com

 Both of the upper theoretical conclusions are completely confirmed through to experiments,
which can be seen from the diagrams at Figure 7 and Figure 8.

Figure 7 Delays in the scheme with 2-input binary adders

Figure 8 Delays in the scheme with 3-input binary adders

 As it showed, the delays of both schemes can be assumed as equal, so as their real values
which are in range of 27 relative time units. Presented diagrams are achieved through addition of
the following 8 numbers:

(3+255) + (255+0) + (255+0) + (128+129) = (255+255+3) + (0+0+255) + (128+129) = 1025.

7. References
[1]. ASIC Design for Signal Processing - Carry Save Arithmetic:

http://www.geoffknagge.com/fyp/ carrysave.shtml
[2]. Loh, Carry Save Addition, Processor Design, spring 2005,

http://www3.cc.gatech.edu/classes/AY2005/cs3220_spring/csa-notes.pdf.
[3]. Digital Computer Arithmetic Datapath Design Using Verilog Hdl, James E. Stine, 2004.

http://books.google.com/books?vid=ISBN1402077106&id=Jc3cz5dvIxYC&pg=RA1-
PA60&lpg=RA1-PA60&ots=K-meqDviLN&dq=design+carry+save+adder&sig=
1fINOk4NXsgKFZIOIHzAcmePPIc#PRA1-PA179,M1

[4] B. Parhami, "Computer Arithmetic" - part Carry Save Arithmetic, Oxford Press, 2000, pp.131.
[5]. Тянев Д. С., Oрганизация на компютъра (цифрова аритметика), ISBN 954-20-0258-0,

ТУ - Варна, 2004 год.
[6]. Карцев М. А., Арифметика цифровых машин, Издательство “Наука”, Москва, 1969.

8

http://www.geoffknagge.com/fyp/ carrysave.shtml
http://www3.cc.gatech.edu/classes/AY2005/cs3220_spring/csa-notes.pdf

Tyanev.com

[7]. Карцев М. А., Брик В. А., Вычислительные системы и синхронная арифметика,
Издательство “Радио и связь”, 1981.

[8]. Специализированные процессоры для высокопроизводительной обработки данных,
Новосибирск, Издательство “Наука”, 1998.

[9]. Фет И., Специализированные однородные структуры. Цифровые компрессоры, АН
Институт Математики, Препринт №27, 1988.

[10]. Kiefer G., Waker A., Thumm A., Rechnerorganisation, Institut fur Informatik, Stuttgart,
2001.

[11]. Schiller, Jochen, Rechnerstrukturen, Freie Universitat, Berlin, 2003.
[12]. T. Kim, W. Jao, and S. Tjiang, "Circuit Optimization using Carry-Save-Adder Cells", IEEE

Trans. on CAD, Vol.17, No.10,1998.

This document has been created at 2006.

9

	Dimitar S. Tyanev, Stefka I. Popova, Aleksandar I. Ivanov,
	Qk=
	Qk=
	Qk=
	t(=
	t(=
	t(=

