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Abstract: This paper submit the idea for parallel at time adding of more than 
two integer numbers with schemes, known as concentrators. A logic structure of 
adder with multiple inputs, based on three-input adder, is offered. Theorem for 
the highest length of the sum is proved in conditions of arbitrary numbers. On the 
ground of this theorem there are analytical estimations of implementation costs 
and switching time. Comparative analysis of the competitive schemes is shown. 
The conclusions proof acceptability of both researched idea and offered scheme. 
The experiments with the schemes were made with the help of Xilinx tools and 
FPGA-family Spartan II. 

 
 
1. Problem formulation 
 There are many applications that generate the problem of computing the sum like: 
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y x                                                                       (1) 

where , =ix i 1,r  usually are n-bits numbers form the same type and format. 
 As subtask, the sum (1) appears in the vector-matrix computations, in the problems of 
mathematical statistic, the problems of digital processing of images and many more. As it showed 
in the quoted literature [1÷12 and other], the idea about parallel adding is known in principle. This 
idea is present in the contemporary analyses, searching for fast machine one part time and/or 
conveyer decisions. There are different suggestions about the adding, but predominant is the use 
of binary schemes with three inputs and so-called saved carry (carry save adders). At the same 
time there is lack of analytical and competitive estimations, as well as the reasons for the choice. 
In [7] there is method for analysis of transitional processes in similar schemes.  
 In this paper we offer another machine implementation, as well as our examination of it, which 
is shown consecutively.  

2. Consecutive addition 
 The classic two-seated arithmetic operation addition 

1 2= +y x x                                                                   (2) 
corresponds to (1) and is realized by known logical schemes of n-bit binary adder. It is known [5], 
that the most inexpensive and the fastest at the same time binary combinational adder is the adder 
with accelerated consecutive carry, which we choose for base, and it has switching time 

.Σ ,= τt n                                                                   (3) 
where τ is the switching time of full one-bit binary combinational adder. 
 So the task for computing of (1) can be solved with the help of next logical structure: 
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Figure1.  Consecutive addition 
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 Although at the structure above all the elements of the sum are given simultaneously, the 
result y is received by consecutive adding of the particular mediate sums Σi with the current 
operand . However, every single of these mediate sums could be prolonged with maximum one 
bit from the left because of the arising carry. So, if the adder Σ

ix
1 has n-bits, then the adder Σ2 got to 

have (n+1)-bits. Further, by analogy follows adder Σ3 – (n+2)-bits, adder Σ4 – (n+3)-bits and so 
on. The last adder Σ(r-1) got to have (n+r-2) bits. It is expected, that full adding in this adder will 
be realized only in the junior n-bits, where the last addends  are given. Full addition in the 
senior (r-2) bits is impossible. Only distribution and adding with likely carry from the (n-1)-bit is 
possible. As we consider, that the length of the addends 

ix

ix  is one and the same, the possibility 
about prolonging of the mediate sum decreases as result of the separate levels. This means that 
determined above length of the last adder is unreal. It is the same for the length of the adders from 
lower levels. But there is no doubt that the highest possible length of final sum depends from the 
count of addends r. This non-conformity leads to the following theorem: 

Theorem: 
The highest possible length of the sum of r n-bit integer numbers is equal to 

⎣ ⎦ 12 ++ )rn log (  [b].                                                         (4) 
Proof: 
 Highest possible sum of r numbers from the same type is received when these numbers has the 
highest possible for their length value 12X n −= . In this case the sum (1) of these numbers from 
the same type could be described as follows: 
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 The number with highest value X actually is binary polynomial from (n-1) row. At the same 
time for the multiplicand r in (5) we can assert, that as binary number is in the range: 

1qq 2r2 +<<  ,                                                         (6) 

where the row of its binary polynomial is q, i.e. (q)
rPr = . So, the unknown quantity q can be 

found from the inequality above, in the conditions of certain excess, after operation logarithm: 
⎣ ⎦)(log rq 2=   .                                                        (7) 

 It is known, that the quantity of digits in a number is bigger with one from the row of its 
polynomial [5]. So the number r in binary system will have (q+1) digits. As a result, the highest 
possible length, required for registration of the highest sum from r elements, is equal to: 

⎣ ⎦ )()( 1)(1 2 ++=++ rnqn log   [b] ,                                            (8) 
Q.E.D. 
 In the special case, when qr 2= , the required length for the sum is (n+q). 
 Proven theorem provides true necessary and sufficient length for registration of every sum 
with rate frequency r and description like (1). The value of deduced extension (q+l) [b] for 
result’s field is at the same time minimum required. Comparing theorem’s result with defined 
length of final adder in structure at Figure 1 – (n+r-2) [b], we will prove, that last is bigger than 
necessary and is unreal, as was mentioned above.  
 This statement we can describe with following ratio: 

n+(q+1)    <    n+(r-2)  .                                                      (9) 
 After replacing of q and transforming of expression, the equivalent ration is 

⎣ ⎦ 3rr )(2 −<log  .                                                      (10) 
 Then with anti-logarithm of the two sides of the ratio: 

3r2r −
<   .                                                           (11) 

 The last is true for every r>6. 
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 The logical structure from Figure 1 can be optimized to correspond to required and enough 
length (4) in connection with proven ratio. For that purpose, if the length of basic adder is 
determined by (4), then on the strength of the proven theorem it has to be applied for every single 
lower level of the structure. This means for the first (r-1) levels, then for the first (r-2) levels and 
so on. Finally in the structure there will be particular groups from adders with one and the same 
length, which definitely will not generate senior carry. 
 The sum of different level’s implementation outlays represents total cost for machine 
realization. The outlays for implementing adders at levels depends from their current length, 
which can be represent like 

⎣ ⎦ .1r,1k,knLk −=+= )(log2                                             (12) 
where k is the number of the level, where the serial adder belongs. So machine cost for 
implementation of the structure from Figure 1 can be estimated through total count of binary 
adders by next sum: 

⎣ .k.n1rQ
1r

1
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k
∑
−

=
+−= )(log)( 2                                               (13) 

 Second estimation, which should be taken into consideration, is logical structure’s switching 
time. Because of nature of the process, realized by the scheme, switching time can be defined 
from how far carry is distributed. Since carry is distributing across length of every adder and 
through all levels to the final, then estimation is 

( )Σt n 2.r 3 .τ .= + −                                                      (14) 
 Notice that this estimation (as highest) cannot be reached for every r, because the carry is 
function of current addends. 

3. Parallel addition 
 Analyzing structure from Figure 1 we can mention, that the only pure parallel addition is 
accomplished between numbers x1 and x2 in adder Σ1. All other numbers – x3, x4, x5, …, xr 
consecutively heap up in the final sum. For the sake of faster operation of the scheme, we suggest 
parallel organization to be propagating through all possible pairs of addends, which lead us to 
Figure 2. 
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Figure 2. Parallel-consecutive addition 

 As it shown, r/2 two-input n-bits adders Σ0 are arranged at first row. At the next row the count 
of adders decreasing two times again, but adders Σ1 have (n+1)-bits. So is certain force to make 
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presented consecutive connection, which forms pyramid-like model of the scheme. The count of 
levels in this pyramid is q, where last adder Σq-1 has (n+q)-bits. In conjunction with the senior 
carry those adder receives (n+q+1)-bits result y.  
 The machine implementation cost for the structure from Figure 2 can be estimated 
analogically: 

.).1(...).2().1(. 110 2 −−+++++++= qNqnNnNnNnQ ,                        (15) 

where the count of the binary adders at particular levels changes as follows 
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 In case of odd number addends at one level, remaining element, which cannot form pair 
addends, is directly sent to the next level, where in conjunction with received intermediate sums 
takes part in the next pair’s addends. That’s why we will control the cyclic accumulation by 
condition, depending of the parameter k – the count of levels in pyramid-like structure.  
 In accordance with the upper row, generally the number of the binary adders at the pyramid’s 
level k will be as follows: 
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 Computations (16) will end when current number of the addends is equal to 1, i.e. 
when . 1=kr
 Then the sum of 1-bit binary adders (15) will be finally represented through (16) like: 
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 Switching time of the structure from Figure 2 is again estimated by how long is distributed 
carry for obtaining total sum in condition of adders with accelerated consecutive carry. As we 
consider, that the adders from every particular level works parallel, switching time of the 
pyramid-like structure can be estimated as 

..)( τqnt 1−+=Σ                                                   (18) 
 The sum reflects the length of adders in first level, which pass on received digits to the next 
level right after their obtaining, where addition begins. Final sums at the output of the second 
level will be late regarding to the initial moment, because of their additional senior bit. This 
switching refers to all other levels. 

4. Parallel addition by 3-input adders 
 In contrast to idea for unfinished adding of three addends (3:2 CSA), discussed in [1, 2 and 
others], [7] offers and estimates finalized scheme of an adder with 3-input concentrator. Achieved 
scheme (Figure 3) is of type 3:1 CSA. Because this scheme has one output, its usage reduces the 
count of levels. On the other side, it reduces the count of fixing registers in case of structures with 
conveyer organization. 
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Figure 3. 3:1 CSA 

 In this structure concentrator S is set of n complete 1-bit binary adders, which operate in 
parallel mode. Latest scheme Σ is complete adder, which adds intermediate sums is  with relevant 
carry 11,,1-i nip −= . 
 Technical estimations of the structure for n-bits numbers, shown at Figure 3, are represented 
by next formulas. Cost of machine implementation is estimated by count of the 1-bit binary 
adders: 

4 



Tyanev.com 

nnnQ .2=+=  ,                                                            (19) 
and switching time – by the switching time of the 1-bit binary adder: 

.τ1nn.ττtΣ )( +=+=   .                                                   (20) 
 For initial task (1) instead of parallel addition of two numbers, what was suggested in section 
3, it will be structured upon groups of 3 numbers. Using such approach in random situation – r-
times addition of n-bits numbers, guarantees minimal count of levels in the pyramid-like structure. 
Generalized estimations about such structures are achieved through to an example - 8 times 
addition of 8-bits numbers (Figure 4).  
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Figure 4. Adding scheme with 4 inputs 

 At the first level of the structure, the count of the groups N has 3 addends, in which separates 
the initial multitude of r addends, can be defined as 
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N   ,       where  .1 rr =                                             (21) 

 If the residual ( ) 13mod1 == rmRe , there is one unused addend left. This addend is sent to the 

next level of the pyramid, where forms triad with obtained from the first level sums z1i. In the 
case ( ) 23mod1 == rmRe , there are two unused addends left. Then additional full binary adder is 
applied at the current level, what is the case with addends x7 and x8 in Figure 4. 
 So the estimation of the machine cost Q1 for implementing of this level, represented like 
number of 1-bit binary adders, is: 

if       then   21 =mRe )1.2.(..2 111 +=+= NnnNnQ  
                          else    11 ..2 NnQ =    .  

The arrangement and implementation of the following second level is similar. The number of 3 
addends groups  could be represent like: 2N
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N , where the general number  is defined by the rule: 2r

if      then   01 ≠Rem 112 += Nr ;   else   12 Nr =   . 
 The arrangement and implementation of the following second level is similar. The number of 
3 addends groups  could be represent like: 2N

if      then   22 =Rem )1().1.(2 22 +++= nNnQ ; 
                          else   22 ).1.(2 NnQ +=   . 

 To synthesize arbitrary level, upper rules can be generalized as follows: 
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where the general number addends  is defined by the rule 1kr +
if      then   0≠kRem 11 +=+ kk Nr    else   kk Nr =+1  .                         (23) 
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 So the estimation for total machine cost Qk+1 will be: 
if      then   21 =+kRem )]1.(2[)].1.(2.[2 11 −++−+= ++ knNknQ kk  

else     11 )].1.(2.[2 ++ −+= kk NknQ    .                                      (24) 
 If current , the synthesis of the structure continues in the same way. Remaining two 
cases leads to the last level in the pyramid, which is synthesized as follows: 

3>kr

1. If , the pyramid ends with the structure from Figure 3, like the example from 
Figure 4. In this case machine cost for the last level is 

3=kr

)]2.(2.[2 −+= knQk ; 
2. If , the pyramid ends only with full binary adder. In this case machine cost is 3<kr

)2.(2 −+= knQk . 
 The relation  is actually the condition about continuing or ending general rules for 
synthesizing the pyramid. At the end total machine cost are the sum of implementation outlays of 
particular levels: 

3>kr

1 2 ...= + + + kQ Q Q Q    .                                                     (25) 
 The switching time of the structure at Figure 4 with arbitrary number of addends is estimated 
again by the length of consecutively distributed carry when forming total result and in condition 
of adders, constructed as described. Considering, that 3-input adders at particular levels works 
parallel, we estimate the switching time of the pyramid-like structure as: 

. ( 1). ( )Σ .= + + − = +t τ n τ k τ n k .τ                                            (26) 
 The logic of this switching is analogical to the described for structure at Figure 2. 

5. Theoretical conclusions 
 Comparative estimations of the machine costs, necessary for implementation of the three 
structures, which were considered, explained by the formulas (13), (17) and (25), are represented 
in Tables 1, 2 and 3 respectively, and also in Figure 5. The results are for the operands with length 
n=32[b]. 

Table 1  Consecutive addition 
r= 8 16 24 32 40 48 56 64 72 128 256 

Qk= 234 514 802 1090 1386 1682 1978 2274 2578 4700 9685 

Table 2 Parallel addition 
r= 8 16 24 32 40 48 56 64 72 128 256 

Qk= 228 491 755 1018 1283 1546 1810 2073 2339 4184 8407 

Table 3 Addition by 3-input schemes 
r= 8 16 24 32 40 48 56 64 72 128 256 

Qk= 228 492 754 1018 1282 1544 1808 2073 2339 4184 8410 
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Figure 5. Machine costs Q depending from count of addends r 
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 The most important conclusions, which can be made from obtained results, are: 
1. The machine costs in case of parallel organization are 10% lower; 
2. 2- and 3-input schemes for parallel addition leads to identical machine costs; 

 
 The comparative estimations of the operation of explained structures, on the basis of the time 
for most delay through switching, determined by the formulas (14), (18) and (26), are represented 
in the Table 4, 5 and 6 respectively, as it Figure 6. 
 
Table 4 Consecutive addition 

r= 8 16 24 32 40 48 56 64 72 128 256 
tΣ= 45.τ 61.τ 77.τ 93.τ 109.τ 125.τ 141.τ 157.τ 173.τ 285.τ 541.τ 

Table 5 Parallel addition 
r= 8 16 24 32 40 48 56 64 72 128 256 1024 2048 
tΣ= 34.τ 35.τ 35.τ 36.τ 36.τ 36.τ 36.τ 37.τ 37.τ 38.τ 39.τ 41.τ 51.τ 

Table 6 Addition by 3-input schemes 
r= 8 16 24 32 40 48 56 64 72 128 256 1024 2048 
tΣ= 34.τ 35.τ 35.τ 36.τ 36.τ 36.τ 36.τ 36.τ 36.τ 37.τ 38.τ 39.τ 39.τ 
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Figure 6. Switching time tΣ depending form the count of addends r 

 The main conclusions from the results are: 
1. Significant superiority of the parallel organization over consecutive. This is because of 

considerable smaller number levels in the pyramid-like organization; 
2. 2- and 3-input schemes for parallel addition have slowly increasing difference in favor 

of the second scheme. The absolute difference between them reaches 12 
relative time units for 2048-times adding. But at the beginning of relations (for 
example to 128-times addition) they can be considered as analogical (with 
accuracy to 1). 

 
6. Experimental results 
 In conformation of achieved theoretical estimations about switching time, presented in tables 5 
and 6, an experimental research and comparing of the logical structures form Figure 2 and Figure 
4 was organized. The case of 8 time addition of 8-bit binary numbers was realized. As a merit of 
the scheme from Figure 4 it is necessary to underline, that it can be loaded up with one more 
number (in difference from the structure at Figure 2). It also can add 9 numbers with almost the 
same machine resources and with the same switching time, which is not possible for the scheme at 
Figure 2. The implementation of the schemes was made in ISE environment of Xilinx – 
WEBPack. Under these conditions estimations of switching time in worst case, according to 
formulas (18) and (26), are the same: .τtΣ 1)3(8 −+= ;  .τtΣ 2)(8+= . As we consider the 
logical scheme of 1-bit binary adder, for whom the estimation τ for even bits is proportional to 2 
logical elements, and for odd bits – to 3 logical elements, we can assert, that the common 
switching time of the schemes is in the range of [20÷30] relative time units. 
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 Both of the upper theoretical conclusions are completely confirmed through to experiments, 
which can be seen from the diagrams at Figure 7 and Figure 8. 

 
Figure 7 Delays in the scheme with 2-input binary adders 

 

 
Figure 8 Delays in the scheme with 3-input binary adders 

 As it showed, the delays of both schemes can be assumed as equal, so as their real values 
which are in range of 27 relative time units. Presented diagrams are achieved through addition of 
the following 8 numbers: 

(3+255) + (255+0) + (255+0) + (128+129)  =  (255+255+3) + (0+0+255) + (128+129)  =  1025. 
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