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Abstract: The objects of comment in this paper are the deficiencies of computer 
generated standard normal statistical samples yielding to the N(0,I) law and the 
impossibility of the generators to guarantee the statistical parameters assigned in 
advance. An approach for appropriation of the statistical samples of a priori known 
mean vector and covariance matrix in absolute conformity with the N(k)(v,С) law is 
suggested. 

Categories and Subject Descriptors: ; G.3 [Probability and Statistics]: Random 
Number Generation; I.5.1 [Pattern Recognition]:Models. 

General Terms: Theory, Statistical Sequences, Experimentation. 

Additional Key Words and Phrases: random-number generation; pattern 
recognition. 

 

1. Computer Generated Samples – Deficiencies 

 The use of statistic estimation for evaluating the values of a certain integer, also known as the 
Monte-Carlo Method, is becoming more and more topical, due to the universal abilities of its computer 
applications [4, 8, 12, 16]. 

 The attention here is to be focused on the problems associated with the solution of the following 
problem: a statistical study is being carried out on a specially synthesised [18] distributing function 
[15], with the purpose of determining its probable possibilities to recognise patterns with precisely 
defined statistical features. In order to implement the respective survey, we need to dispose of 
statistical samples yielding to a definite distribution law. The survey is fulfilled over computer 
generated samples. However, the actual condition with this approach is such that there are no 
guarantees for the full satisfaction of the required statistical parameters of the distribution law. For 
instance, the numeric sequences that have to subordinate to a uniform law, are in fact, non-uniformly 
distributed, and, what is more, they are usually pseudorandom, due to their periodicity [2, 8, 12]. On 
the other hand, if they are uniform [17], they are not random. The multidimensional space environment 
involves the requirement for independence of the one-dimensional generators [5]. The practical 
situations, however, are characterised by the presence of strong correlation. 

 After studying many methods and programs for generation of standard normally distributed 
samples from random k-dimensional vectors [4, 6, 8, 11, 14, etc.], the following major conclusions 
have been ascertained: 

1). The samples are characterised with displacement and their mean vector is non-zero; 

2). The samples have hyperellipsoidal space dispersion, instead the expected 
hyperspherical dispersion; 

3). Their own eigenvector basis is oriented randomly and in general position, instead of 
coinciding with the co-ordinate system of axes on the set of one-dimensional and 
independent generators, as expected to be; 

4) The samples have dense covariance matrices instead of the predictable identity 
matrix. 

 The above-stated conclusions are supported by experimental results, represented in Table 1. 
The formulation of the experiment, which results in these particular examples, consists of the 
following: using the library subroutine RNNOA in FORTRAN-90 [11], a lot of statistical samples of m in 
number standard and normally distributed k-dimensional random vectors are generated. Here is a 
short quotation from the library Programmer’s Handbook, regarding the above-mentioned subroutine. 
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 "Generate pseudorandom numbers from a standard normal distribution using an 
acceptance/rejection method. 

Usage 
 CALL RNNOA (NR, R) 
Arguments 
  NR — Number of random numbers to generate. (Input) 
  R — Vector of length NR containing the random standard normal deviates. (Output) 
Algorithm 
 Routine RNNOA generates pseudorandom numbers from a standard normal (Gaussian) 
distribution using an acceptance/rejection technique due to Kinderman and Ramage (1976). In this 
method, the normal density is represented as a mixture of densities over which a variety of 
acceptance/rejection methods due to Marsaglia (1964), Marsaglia and Bray (1964), and Marsaglia et 
al. (1964) are applied. This method is faster than the inverse CDF technique used in RNNOR to 
generate standard normal deviates." 

 The volumes m, for the purpose of which the numeric values have been produced, are picked out 
of the interval from 200 to 5000, which has been considered to be representative enough. The 
numeric values refer to the Euclidean vector norm of the mean vector µ and to the eigenvalues λi of 
the covariance matrix of each sample. The results in Table 1 are related to the samples, generated in 
7-dimensional space. The mean vector characterises the distribution displacement compared to the 
initiation of the co-ordinate system, and its eigenvalues – its deviation from the hyperspherical shape. 

                 Table 1 

 m=200 m=500 m=1500 m=3000 m=5000 
|µ| 0.21848 0.15392 0.05995 0.03903 0.02322 
λ1 0.85786 0.90645 1.00208 0.98623 1.02536  
λ2 0.95876 1.03759 0.98528 1.03707 1.00983 
λ3 0.94530 0.96545 1.03142 0.99591 1.00133 
λ4 0.91762 1.07776 0.96478 0.97215 1.01239 
λ5 0.97808 0.94318 0.95656 0.95317 0.98087 
λ6 0.95815 1.06364 1.05786 1.03465 0.99783 
λ7 1.07937 0.95622 0.97793 0.99684 0.99186 

 
 From the above-displayed results, one could easily estimate that the deviations of eigenvalues, 
as related to 1, reach up to 14% (see Table 1 – λ1, for m=200). For the largest volume – m=5000, the 
deviation decreases to 2,5%. The situation with the sample displacement is similar. The magnitude of 
mean vector, which is expected to be zero, reaches to |µ|=0.21848 (see Table 1 – for m=200). 
Considering that in this case the radius of the statistical dispersion in the space is less than 3.σ=3, 
one could estimate that the sample displacement is more than 7%. For the largest volume – m=5000 
the displacement decreases under 1%. 
 We find such deviations of the indicated parameters of the required values to be rather 
significant. 
 The shown deviation parameters relate to the particular generator and the particular samples, 
that is, other values, higher and lower, could be produced with other samples, derived from other 
generators. This fact of random behaviour and impossibility a priori to be guaranteed the statistical 
parameters of particularly generated samples is inadmissible in cases where the pursue is for a 
statistical estimation of a given value and when the conditions for the conduct of the estimation have 
been assigned a priori. These are the grounds for the search of a way to fulfil these conditions with 
generation of experimental statistical data. 
 
 
2. Formulation of the Problem 

 The conclusions stated so far unambiguously lead to formulation of the task for a “correction” of 
the generated statistical sample in terms of its constant ability to generate the required statistical 
structure. The formal treatment reads: the given matrix X(m,k) whose rows are the generated (m in 
number) k-dimensional random and normally distributed in space vectors, i.e., the matrix X represents 
a generated sample. The actual parameters of this sample could be computed and let they are: µ(k) – 
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mean vector and K(k,k) – covariance matrix. Thus the distribution, which represents the matrix X, 
satisfies the normal law N(µ,K). At the same time, the samples are required to have the parameters of 
the N(ν,C) law. It is, therefore, clearly realised that two formal problems are distinguished: 

a)  the problem of statistical centre shift from point µ to point ν; 

b)  the problem of the statistical structure conversion defined by the covariance matrix shown 
by K to the required one – shown by the matrix C. 

 
 
3. Solution 

 The problems, formulated above, are not immediately associated, which facilitates the solution. 
The first problem is easy to solve – the needed translation of the statistical centre is achieved by 
means of the differentiating vector r. 

 The second problem requires that the statistical sample X converts into a new one – Y, which 
possesses the necessary statistical parameters. The solution is to be found in the form of a linear 
operator, with converting matrix S. Using this approach, every vector  is to be derived as follows: iy
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 The most probable values of the statistical parameters of the sample Y are estimated like this [9]: 
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 By (2) we find the differentiating vector r: 
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 The last formula shows how the converting matrix S of the linear operator (1) conjoins the actual 
covariance matrix K with the needed C. According to [1] the sufficient condition for the existence of the 
matrix S is that the matrices K and C need to be commutative. Here this condition is fulfilled as the 
covariance matrices are symmetrical. 

 The construction of the linear operator (1) is based on the following theorem: 

 Theorem:  Let K and C be symmetrical positively determined matrices and let their orthogonal 
decompositions be given by: 

T.. VVK Λ=          (5) 
and 

T.. ΦΦDC = ,         (6) 

where Λ and D are diagonal matrices, containing their relevant eigenvalues, and V and Φ are the 
orthonormal matrices of their eigenvectors, corresponding to them, then the matrix of linear 
conversion S is given as: 

T2/12/1 ... ΦΛ DVS −
=         (7) 
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 Proof:  We substitute directly (7) in (4) to obtain: 
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 According to equation (5), the bracketed expression in the last formula equals to Λ, which results 
in: 

T2/12/12/12/1 ...... ΦΛΛΛΦ DD −−  = T.. ΦΦD  = C.      (8) 

 The above-mentioned expression shows that the matrix S converts the matrix K into C, as 
required by equation (4). This completes the proof. 

 In case the covariance matrix K is positively semidetermined, with rank n (n<k), then it has (k-n) 
in number eigenvalues, equal to zero. Therefore, the diagonal matrix Λ in decomposition (5), is given 
as the following block matrix: 
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ΛΛ λλλλλ .     (9) 

 Such a matrix has a signature number q=k-n and inertia matrix [13] . Under 

these actual conditions the multidimensional statistical sample X has no dispersion in the direction of 
those eigenvectors, to which zero eigenvalues correspond. This fact makes the forming of the matrix 

(7) impossible, as it includes the reciprocal square root 

);(diag)( qn 0II =Λ
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 In this case, in order to guarantee the conversion (1), we will nullify the signature number of the 
matrix Λ, while accepting the identity matrix to be its inertia matrix and forming the following block 
matrix: 
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 Such a matrix has a full rank and therefore the matrix  exists. Thus, under the conditions 

of the above theorem, the conversion (1) could be achieved by means of the following converting 
matrix: 
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 By substituting (11) in (4), we obtain: 
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 In the last expression, the product of the three diagonal matrices has appeared in the form of (9), 
which shows that the statistical sample Y will obtain the required parameters, but only in the n-
dimensional space, determined by the inertia matrix I(Λ). In this situation, the statistical sample Y 
would not be able to obtain the structure assigned through any matrix C. The latter will be achieved 
partly (only in the n-dimensional space). In the remaining part, (q-dimensional complementing 
subspace) the needed structure would not be possible to achieve – there it would be ignored, which is 
in full conformity with Sylvester’s Inertia Theorem [13], according to which the connection (4) is 
possible, if both matrices K and C have the same inertia. 
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4. Conclusion 
 
 The ensuing results, that experiments completely suit, confirm the expectations. For example, 
when the required as a statistical sample covariance matrix C(3, 3) is assigned:  

C =
−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

7 3 0
3 7 0
0 0 1

, 

then without fulfilment of the correction algorithm under the already mentioned conditions and means, 
a random statistical sample of 1000 3-dimensional vectors is generated, whose covariance matrix has 
elements, substantially distinctive from the required ones: 
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 At the same time, if the generated sample is processed by the means of the correction algorithm, 
we get a statistical sample, possessing the following covariance matrix: 

C =
+ − + −

− + + −
− − − +

⎡
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⎢
⎢
⎢

⎤

⎦

⎥
⎥
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0 7000002 01 0 3000002 01 0 7675064 07
0 3000002 01 0 7000001 01 0 1636595 06

0 7675064 07 0 1636595 06 0 1000000 01

. . .
. . .

. . .

E E
E E

E E
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 It could be assumed that the correspondence is accomplished as it depends solely on the 
accuracy of the computer calculations. 

 In conclusion, we could deduce that the method herein presented is able to convert any normally 
distributed statistical structure into another randomly chosen one, but under the conditions of the 
above theorem. This common statement also holds good for the particular case with positively 
semidetermined covariance matrix C. In this case, the matrix D in decomposition (6), will appear in the 
form of (9) and the matrix C will yield to the properties expressed in this connection. However, since in 

(7), as well as in (11), its positive square root  participates, this fact does not obstruct the 
execution of the conversion (1). It is, yet, important to apprehend, that in this particular case, the 
initially given k-dimensional sample X, after the conversion into the space Y, will lose the dispersion in 
the direction of those eigenvectors, to which correspond zero eigenvalues of the matrix C. It could be 
therefore affirmed, that in this case the conversion (1) changes also the dimension of the eigenspace 
(k⇒n) – a property that could successfully be used for the solution of some problems connected with 
pattern recognition. 
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5. In addition to Deficiencies 

 Although assisted by the suggested conversion method, any statistical structure could alter as 
required, it keeps storing some of its deficiencies. Such defects that could not be eliminated by this 
conversion, we could call non-eliminateable, and we use different means for trouble shooting. A 
typical instance of such defect in the statistical structure represents the random shift – a least 
probable realisation, disobeying the (3.σ) rule, when generating the random normally distributed 
vectors. In the multidimensional space such realisation represents a point, standing non-typically 
(indiscreet) and obviously out of the main group of points, as shown on the figure 1, right bellow. 

 

Figure 1: Influence of a randomly shifted point to the main directions 
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 As a consequence of the presence of such a randomly shifted point in the statistical sample, the 
main directions of the maximum dispersion will be determined with deviation towards their most 
probable position, which would occur if this point did not exist - and we will have e11 instead of e1. 
The presence of randomly shifted points in the samples is determined by the properties of uniformly 
distributed generators, as well as the properties of the normally distributed generators. Therefore the 
opposition against these deficiencies is most likely to lead to increase in their quality. 
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